Problems marked with a (*) are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems marked with (\heartsuit).

10.1. BONUS PROBLEM. Calculate the area of the spherical quadrilateral $S \subset \mathbb{S}^2$ bounded by the meridians $-\pi < \phi_1 < \phi_2 < \pi$ and parallels $-\pi/2 < \theta_1 < \theta_2 < \pi/2$.

10.2. The surface area of a Torus. Let $S = \{(x, y, 0) \in \mathbb{R}^3 | x^2 + y^2 = 4\}$ and $T = \{x \in \mathbb{R}^3 | d_S(x) \leq 1\}$, where $d_S(x) = \inf\{|x - y| | y \in S\}$ denotes the minimal distance from S to $x \in \mathbb{R}^3$. Parameterize ∂T and then calculate the area.

10.3. Solids of revolution. \heartsuit Given $f \in C^2((a, b)) \cap C([a, b])$ such that $f \ge 0$, define the rotational body around the x-axis as

$$\Omega := \left\{ (x, y, z) \in \mathbb{R}^3 \mid a < x < b, \sqrt{y^2 + z^2} < f(x) \right\},\$$
$$\partial_{\text{side}} \Omega := \left\{ (x, y, z) \in \mathbb{R}^3 \mid a < x < b, \sqrt{y^2 + z^2} = f(x) \right\},\$$

- 1. Say whether Ω , $\partial_{\text{side}}\Omega$ are open/closed/connected subsets of \mathbb{R}^3 .
- 2. Show that $\operatorname{vol}_3(\Omega) = \pi \int_a^b f(x)^2 dx$,
- 3. Show that $\operatorname{vol}_2(\partial_{\operatorname{side}}\Omega) = 2\pi \int_a^b \sqrt{1 + f'(x)^2} f(x) dx$. Hint: parametrise $(x, \theta) \mapsto (x, f(x) \cos \theta, f(x) \sin \theta)$.
- 4. Calculate the volume and surface area of the 'improper rotational body' that arises when f(x) = 1/x, $a = 1, b = \infty$.
- 5. (*) Show that Ω is a bounded C^1 domain (as in Definition 14.3) if and only if

$$f(x) > 0$$
 in (a, b) , $f'(a^+) = +\infty$, $f'(b^-) = -\infty$.

10.4. Tractrix. Consider the planar curve $\sigma: (0, \pi) \to \mathbb{R}^2$ given by $\sigma(t) := (\sin(t), \cos(t) + \log \tan(t/2))$.

- 1. \heartsuit Compute the length $L(\sigma|_{[\epsilon,\pi/2]})$ and study its behaviour as $\epsilon \to 0^+$.
- 2. For any $t \in (0, \pi)$ consider the segment I_t tangent to σ in t and joining $\sigma(t)$ and the y axis. Show that the length of I_t is always 1, independently from t.
- 3. (*) Say whether the set $\sigma((0,\pi)) \subset \mathbb{R}^2$ is a smooth manifold. Hint: how would it's tangent space be around the point $\sigma(\pi/2)$.

10.5. Logarithmic Spiral. Consider, for a > 0, b < 0 the planar curve $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ given by

$$\gamma(t) := (ae^{bt}\cos t, ae^{bt}\sin t).$$

- 1. \heartsuit Compute $L(\gamma|_{[0,T]})$ and study its behaviour as $T \to \infty$.
- 2. Express in polar coordinates the set $\gamma(\mathbb{R})$, and sketch it.
- 3. (*) Say whether $\gamma(\mathbb{R})$ is a smooth submanifold of \mathbb{R}^2 .

10.6. Moment of inertia of an ellipsoid.

1. Determine the Jacobi determinant of the mapping

$$\Phi: \{(s,t): s > 0, \ 0 < t < 2\pi\} \to \mathbb{R}^2, \quad (s,t) \mapsto (as\cos(t), bs\sin(t))$$

in terms of the parameters a, b > 0.

2. Calculate the polar moment of inertia $J_0 = \int_B x^2 + y^2 d \operatorname{vol}(x, y)$ of the ellipse $B = \{(x, y) \in \mathbb{R}^2 : x^2/a^2 + y^2/b^2 \leq 1\}$ with semi-axes a, b > 0.