Problems marked with a $\left(^{*}\right)$ are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems marked with (\odot).
10.1. BONUS PROBLEM. Calculate the area of the spherical quadrilateral $S \subset \mathbb{S}^{2}$ bounded by the meridians $-\pi<\phi_{1}<\phi_{2}<\pi$ and parallels $-\pi / 2<\theta_{1}<\theta_{2}<\pi / 2$.
10.2. The surface area of a Torus. Let $S=\left\{(x, y, 0) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=4\right\}$ and $T=\left\{x \in \mathbb{R}^{3} \mid d_{S}(x) \leq 1\right\}$, where $d_{S}(x)=\inf \{|x-y| \mid y \in S\}$ denotes the minimal distance from S to $x \in \mathbb{R}^{3}$. Parameterize ∂T and then calculate the area.
10.3. Solids of revolution. \odot Given $f \in C^{2}((a, b)) \cap C([a, b])$ such that $f \geq 0$, define the rotational body around the x-axis as

$$
\begin{aligned}
\Omega & :=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a<x<b, \sqrt{y^{2}+z^{2}}<f(x)\right\}, \\
\partial_{\text {side }} \Omega & :=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a<x<b, \sqrt{y^{2}+z^{2}}=f(x)\right\},
\end{aligned}
$$

1. Say whether $\Omega, \partial_{\text {side }} \Omega$ are open/closed/connected subsets of \mathbb{R}^{3}.
2. Show that $\operatorname{vol}_{3}(\Omega)=\pi \int_{a}^{b} f(x)^{2} d x$,
3. Show that $\operatorname{vol}_{2}\left(\partial_{\text {side }} \Omega\right)=2 \pi \int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} f(x) d x$. Hint: parametrise $(x, \theta) \mapsto$ $(x, f(x) \cos \theta, f(x) \sin \theta)$.
4. Calculate the volume and surface area of the 'improper rotational body' that arises when $f(x)=1 / x, a=1, b=\infty$.
5. (*) Show that Ω is a bounded C^{1} domain (as in Definition 14.3) if and only if

$$
f(x)>0 \text { in }(a, b), \quad f^{\prime}\left(a^{+}\right)=+\infty, \quad f^{\prime}\left(b^{-}\right)=-\infty .
$$

10.4. Tractrix. Consider the planar curve $\sigma:(0, \pi) \rightarrow \mathbb{R}^{2}$ given by $\sigma(t):=(\sin (t), \cos (t)+$ $\log \tan (t / 2))$.

1. \checkmark Compute the length $L\left(\left.\sigma\right|_{[\epsilon, \pi / 2]}\right)$ and study its behaviour as $\epsilon \rightarrow 0^{+}$.
2. For any $t \in(0, \pi)$ consider the segment I_{t} tangent to σ in t and joining $\sigma(t)$ and the y axis. Show that the length of I_{t} is always 1 , independently from t.
3. $\left(^{*}\right)$ Say whether the set $\sigma((0, \pi)) \subset \mathbb{R}^{2}$ is a smooth manifold. Hint: how would it's tangent space be around the point $\sigma(\pi / 2)$.
10.5. Logarithmic Spiral. Consider, for $a>0, b<0$ the planar curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\gamma(t):=\left(a e^{b t} \cos t, a e^{b t} \sin t\right)
$$

1. \odot Compute $L\left(\left.\gamma\right|_{[0, T]}\right)$ and study its behaviour as $T \rightarrow \infty$.
2. Express in polar coordinates the set $\gamma(\mathbb{R})$, and sketch it.
3. $\left(^{*}\right)$ Say whether $\gamma(\mathbb{R})$ is a smooth submanifold of \mathbb{R}^{2}.

10.6. Moment of inertia of an ellipsoid.

1. Determine the Jacobi determinant of the mapping

$$
\Phi:\{(s, t): s>0,0<t<2 \pi\} \rightarrow \mathbb{R}^{2}, \quad(s, t) \mapsto(\text { as } \cos (t), b s \sin (t))
$$ in terms of the parameters $a, b>0$.

2. Calculate the polar moment of inertia $J_{0}=\int_{B} x^{2}+y^{2} d \operatorname{vol}(x, y)$ of the ellipse $B=\left\{(x, y) \in \mathbb{R}^{2}: x^{2} / a^{2}+y^{2} / b^{2} \leq 1\right\}$ with semi-axes $a, b>0$.
