Problems marked with a (*) are a bit harder. Hints are available in the next page.

1.1. Recap Questions.

D-MATH

- 1. Let $\{x_k\}_{k\in\mathbb{N}} \subset [1,2] \subset \mathbb{R}$ be a sequence. Is it necessarily convergent?
- 2. Describe all differentiable functions $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ such that f'(x) = 1/x for all $x \neq 0.$
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and bounded, is it true that

$$\int_0^{\pi/2} f(\cos(x)) \, dx = \int_0^1 \frac{f(t)}{\sqrt{1-t^2}} \, dt?$$

- 4. Let $f: [0,\infty) \to \mathbb{R}$ have f''(x) > 0 for all $x \ge 0$. Can f have a global maximum point?
- 5. Let $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map and let $Q := [0,1] \times [0,1]$ be the unit square. How does $\phi(Q)$ look like? What are the possibilities?
- 6. Consider the vector space V of polynomials of degree less than 4, and the function $D: V \to V$ which associates to a polynomial p its derivative p'. Is D a linear map? Is so, what is the dimension of its null space?
- **1.2. From equations to drawings.** Sketch the following subsets of \mathbb{R}^2 , \mathbb{R}^3 .
 - 1. $A := \{(x, y) : x^2 + y^2 < 1, y > x^2\}$ 2. $B := \{(x, y) : y^2 = x^3 - x\}$ 3. $C := \{(x,y) : \frac{\pi}{6} < \arctan(y/x) < \frac{\pi}{3}, \ 0 < x < y\}$ 4. $D := \{(x, y, z) : \sqrt{x^2 + y^2} = 1 - z, 0 < z < 1\}$ 5. $E := \{(x, y, z) : z = \sqrt{1 + x^2 + y^2}\}$ 6. $F := \{(x, y, z) : z = \max\{|x|, |y|\}\}$

1.3. From drawings to equations. Express in terms of functions and equations the following sets.

- 1. The coordinates of a point in the plane that goes endlessly back and forth from the origin to the point (-1, 1).
- 2. A planar domain with two holes in it.
- 3. A bi-dimensional disk sitting inside the plane $\{x + y + z = 0\}$ in \mathbb{R}^3 .
- 4. A Pac-Man shaped domain in the plane.
- 5. A pyramid, whose base is a square, sitting in \mathbb{R}^3 .

Hints:

- 1.2 As ETH students you have a license for Mathematica. All these plots are one-line-commands using that software!
- 1.2.2 The set is clearly symmetric with respect to $y \mapsto -y$, so it's enough to plot qualitatively the function $y(x) = \sqrt{x^3 x}$, separately in the intervals $x \in [-1, 0]$ and $x \in [0, \infty)$... From here you can use all the technology from Analysis I...
- 1.2.4 Try to figure out how D looks layerwise, i.e., as a planar domain once z is kept fixed.
- 1.2.5 If you known how to plot $z = f(s), s \ge 0$, then the set $\{(x, y, z) : z = f(\sqrt{x^2 + y^2})\}$ is obtained rotating the plot of f around the z-axis...
- 1.3.1 Construct an appropriate function $f : \mathbb{R} \to \mathbb{R}^2$, where t represents the time and f(t) represents the position of the moving point at time t. You want f to be periodic in t and f(t) to be aligned with the direction (-1, 0)
- 1.3.3 Observation: the intersection of a round ball with a plane is a disk...
- 1.3.5 Take inspiration from 1.2.4 and $1.2.6\ldots$

1. Solutions

Solution of 1.1:

- 1. No, take for example $\{1 + (-1)^k\}_{k \in \mathbb{N}}$. What is true is that by the Heine-Borel Theorem, $\{x_k\}_{k \in \mathbb{N}}$ has a convergent subsequence (cf. Corollary 2.117).
- 2. f is determined up to a constant in each of the intervals $(-\infty, 0)$ and $(0, \infty)$ (cf. Corollary 5.46). The point is that these two constants may be different, hence the most general f is

$$f(x) = \begin{cases} \alpha + \log x & \text{if } x > 0, \\ \beta + \log(-x) & \text{if } x < 0, \end{cases}$$

for some $\alpha, \beta \in \mathbb{R}$. Remark: the answer $f(x) = \log |x| + c, c \in \mathbb{R}$ is wrong.

- 3. Yes, this is the change of variables formula in the integrals (cf. Theorem 7.13).
- 4. Yes, $f := e^{-x}$ has a maximum point at x = 0 and f'' = f > 0.
- 5. $\phi(Q)$ is the parallelogram generated by the two vectors $\{\phi(1,0), \phi(0,1)\}$. To be precise, if $\phi(1,0), \phi(0,1)$ are aligned the parallelogram degenerates in fact into a segment, and if $\phi(1,0) = \phi(0,1) = 0$ then it degenerate (even more) into the single point $\{0\}$.
- 6. Yes, the derivative is a linear operator when acts on functions (cf. Proposition 5.12), and in particular it stays a linear operator when it acts on polynomials. V has dimension 4 since it is generated by the basis $\{1, X, X^2, X^3\}$ (this is ultimately the very definition of polynomial less than 4). One explicitly computes that, trough D,

$$1 \mapsto 0, \quad X \mapsto 1, \quad X^2 \mapsto 2X, \quad X^3 \mapsto 3X^2.$$

Which reads in matrix form (with respect to the basis $\mathcal{B} := \{1, X, X^2, X^3\}$)

$$[D]_{\mathcal{B},\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The rank (=dimension of the span of the columns) of this matrix is 3, so by the rank-nullity Theorem, the nullity is 4 - 3 = 1.

Solution of 1.2:

1. One has to intersect the disk $\{x^2 + y^2 \leq 1\}$ with the epigraph of the parabola $\{y = x^2\}$:

2. Since $x^3 - x = x(x+1)(x-1) \ge 0$ if and only if $x \in [-1,0] \cup [1,\infty)$, one needs to study the function $f(x) := \sqrt{x^3 - x}$ separately in these two intervals. The set B will then be the union of the graphs of f and -f. In the interval [-1,0], f is concave and vanishes at the extrema, with a maximum point at $x = -\frac{1}{\sqrt{3}}$. Also in $[1,\infty)$ f is concave and monotonically increasing, vanishing at x = 1. At infinity it grows like $x^{3/2}$.

- 3. Since 0 < x < y, the set C is contained in the second octant of the plane. The condition $\frac{\pi}{6} < \arctan(y/x) < \frac{\pi}{3}$ forces any point in C to have span an angle between 30° and 60° with respect to the positive x axis. In summary we find that C is the region of the first quadrant of the plane between the lines $\{y = x\}$ and $\{y = \sqrt{3}x\}$.
- 4. The set $D \cap \{z = t\}$ is a circle of radius 1 t, so the picture must be a round cone of height 1 over the unit circle:

5. As in the Hint, the set is obtained rotating the plot of $y = \sqrt{1 + x^2}$ around the z axis:

6. First one plots in 3D z = |x| and z = |y|, obtaining:

Then one takes the maximum of the two plots. To visualize this, it might be helpful to notice that the level sets $\{\max\{|x|, |y|\} = t\}$ coincide with the squares $[-t, t] \times [-t, t]$, for all $t \ge 0$. One finds

Solution of 1.3:

- 1. A point that moves along the line spanned by (-1, 1) is represented by $\mathbb{R} \ni t \mapsto (-f(t), f(t)) \in \mathbb{R}^2$, where $f \colon \mathbb{R} \to \mathbb{R}$ is some function. We want the motion to take place in the segment, so we require $0 \leq f(t) \leq 1$. We also want the function to be defined for all $t \geq 0$ ("endlessly"). We also want the function to go back and forth, so a natural guess at this point is $f(t) = \sin(t)$... but of course other choices are possible.
- 2. Remove two small squares from a large square

$$\Big\{10 > \max\{|x|, |y|\} > 1, \max\{|x-5|, |y-6|\} > 1\Big\}.$$

3. As suggested it is enough to intersect the ball $\{x^2 + y^2 + z^2 \le 1\}$ with the plane $\{x + y + z = 0\}$.

4. Remove from a disk a 30° angle:

$$\{x^2 + y^2 \le 1\} \setminus \{|\arctan(y/x)| \le \pi/6, x > 0\}.$$

5. We saw that the level sets of $(x, y) \mapsto \max\{|x|, |y|\}$ are squares (cf. 1.2.6), and we saw how to construct a pyramid using a function whose level sets were circles (cf. 1.2.4). Combining the two formulas one gets

$$\Big\{1 - z = \max\{|x|, |y|\}, 0 \le z \le 1\Big\}.$$