Problems marked with a $\left(^{*}\right)$ are a bit harder. Hints are available in the next page.

1.1. Recap Questions.

1. Let $\left\{x_{k}\right\}_{k \in \mathbb{N}} \subset[1,2] \subset \mathbb{R}$ be a sequence. Is it necessarily convergent?
2. Describe all differentiable functions $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=1 / x$ for all $x \neq 0$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and bounded, is it true that

$$
\int_{0}^{\pi / 2} f(\cos (x)) d x=\int_{0}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t ?
$$

4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ have $f^{\prime \prime}(x)>0$ for all $x \geq 0$. Can f have a global maximum point?
5. Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map and let $Q:=[0,1] \times[0,1]$ be the unit square. How does $\phi(Q)$ look like? What are the possibilities?
6. Consider the vector space V of polynomials of degree less than 4 , and the function $D: V \rightarrow V$ which associates to a polynomial p its derivative p^{\prime}. Is D a linear map? Is so, what is the dimension of its null space?
1.2. From equations to drawings. Sketch the following subsets of $\mathbb{R}^{2}, \mathbb{R}^{3}$.
7. $A:=\left\{(x, y): x^{2}+y^{2}<1, y \geq x^{2}\right\}$
8. $B:=\left\{(x, y): y^{2}=x^{3}-x\right\}$
9. $C:=\left\{(x, y): \frac{\pi}{6}<\arctan (y / x)<\frac{\pi}{3}, 0<x<y\right\}$
10. $D:=\left\{(x, y, z): \sqrt{x^{2}+y^{2}}=1-z, 0<z<1\right\}$
11. $E:=\left\{(x, y, z): z=\sqrt{1+x^{2}+y^{2}}\right\}$
12. $F:=\{(x, y, z): z=\max \{|x|,|y|\}\}$
1.3. From drawings to equations. Express in terms of functions and equations the following sets.
13. The coordinates of a point in the plane that goes endlessly back and forth from the origin to the point $(-1,1)$.
14. A planar domain with two holes in it.
15. A bi-dimensional disk sitting inside the plane $\{x+y+z=0\}$ in \mathbb{R}^{3}.
16. A Pac-Man shaped domain in the plane.
17. A pyramid, whose base is a square, sitting in \mathbb{R}^{3}.

Hints:

1.2 As ETH students you have a license for Mathematica. All these plots are one-linecommands using that software!
1.2.2 The set is clearly symmetric with respect to $y \mapsto-y$, so it's enough to plot qualitatively the function $y(x)=\sqrt{x^{3}-x}$, separately in the intervals $x \in[-1,0]$ and $x \in[0, \infty) \ldots$ From here you can use all the technology from Analysis I...
1.2.4 Try to figure out how D looks layerwise, i.e., as a planar domain once z is kept fixed.
1.2.5 If you known how to plot $z=f(s), s \geq 0$, then the set $\left\{(x, y, z): z=f\left(\sqrt{x^{2}+y^{2}}\right)\right\}$ is obtained rotating the plot of f around the z-axis...
1.3.1 Construct an appropriate function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$, where t represents the time and $f(t)$ represents the position of the moving point at time t. You want f to be periodic in t and $f(t)$ to be aligned with the direction $(-1,0)$
1.3.3 Observation: the intersection of a round ball with a plane is a disk...
1.3.5 Take inspiration from 1.2.4 and 1.2.6...

1. Solutions

Solution of 1.1:

1. No, take for example $\left\{1+(-1)^{k}\right\}_{k \in \mathbb{N}}$. What is true is that by the Heine-Borel Theorem, $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ has a convergent subsequence (cf. Corollary 2.117).
2. f is determined up to a constant in each of the intervals $(-\infty, 0)$ and $(0, \infty)$ (cf. Corollary 5.46). The point is that these two constants may be different, hence the most general f is

$$
f(x)= \begin{cases}\alpha+\log x & \text { if } x>0 \\ \beta+\log (-x) & \text { if } x<0\end{cases}
$$

for some $\alpha, \beta \in \mathbb{R}$. Remark: the answer $f(x)=\log |x|+c, c \in \mathbb{R}$ is wrong.
3. Yes, this is the change of variables formula in the integrals (cf. Theorem 7.13).
4. Yes, $f:=e^{-x}$ has a maximum point at $x=0$ and $f^{\prime \prime}=f>0$.
5. $\phi(Q)$ is the parallelogram generated by the two vectors $\{\phi(1,0), \phi(0,1)\}$. To be precise, if $\phi(1,0), \phi(0,1)$ are aligned the parallelogram degenerates in fact into a segment, and if $\phi(1,0)=\phi(0,1)=0$ then it degenerate (even more) into the single point $\{0\}$.
6. Yes, the derivative is a linear operator when acts on functions (cf. Proposition 5.12), and in particular it stays a linear operator when it acts on polynomials. V has dimension 4 since it is generated by the basis $\left\{1, X, X^{2}, X^{3}\right\}$ (this is ultimately the very definition of polynomial less than 4). One explicitly computes that, trough D,

$$
1 \mapsto 0, \quad X \mapsto 1, \quad X^{2} \mapsto 2 X, \quad X^{3} \mapsto 3 X^{2}
$$

Which reads in matrix form (with respect to the basis $\mathcal{B}:=\left\{1, X, X^{2}, X^{3}\right\}$)

$$
[D]_{\mathcal{B}, \mathcal{B}}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The rank (=dimension of the span of the columns) of this matrix is 3 , so by the rank-nullity Theorem, the nullity is $4-3=1$.

Solution of 1.2:

1. One has to intersect the disk $\left\{x^{2}+y^{2} \leq 1\right\}$ with the epigraph of the parabola $\left\{y=x^{2}\right\}$:

2. Since $x^{3}-x=x(x+1)(x-1) \geq 0$ if and only if $x \in[-1,0] \cup[1, \infty)$, one needs to study the function $f(x):=\sqrt{x^{3}-x}$ separately in these two intervals. The set B will then be the union of the graphs of f and $-f$. In the interval $[-1,0], f$ is concave and vanishes at the extrema, with a maximum point at $x=-\frac{1}{\sqrt{3}}$. Also in $[1, \infty) f$ is concave and monotonically increasing, vanishing at $x=1$. At infinity it grows like $x^{3 / 2}$.

$$
\left\{y^{2}=x^{3}-x\right\} \cap[-2,2.5] \times[-2,2]
$$

3. Since $0<x<y$, the set C is contained in the second octant of the plane. The condition $\frac{\pi}{6}<\arctan (y / x)<\frac{\pi}{3}$ forces any point in C to have span an angle between 30° and 60° with respect to the positive x axis. In summary we find that C is the region of the first quadrant of the plane between the lines $\{y=x\}$ and $\{y=\sqrt{3} x\}$.
4. The set $D \cap\{z=t\}$ is a circle of radius $1-t$, so the picture must be a round cone of height 1 over the unit circle:

$$
\left\{\sqrt{x^{2}+y^{2}}=1-z\right\} \cap[-1.2,1.2] \times[-1.2,1.2] \times[0,1]
$$

5. As in the Hint, the set is obtained rotating the plot of $y=\sqrt{1+x^{2}}$ around the z axis:

6. First one plots in 3D $z=|x|$ and $z=|y|$, obtaining:

$\{z=|x|\}$

$\{z=|y|\}$

Then one takes the maximum of the two plots. To visualize this, it might be helpful to notice that the level sets $\{\max \{|x|,|y|\}=t\}$ coincide with the squares $[-t, t] \times[-t, t]$, for all $t \geq 0$. One finds

Solution of 1.3:

1. A point that moves along the line spanned by $(-1,1)$ is represented by $\mathbb{R} \ni t \mapsto$ $(-f(t), f(t)) \in \mathbb{R}^{2}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is some function. We want the motion to take place in the segment, so we require $0 \leq f(t) \leq 1$. We also want the function to be defined for all $t \geq 0$ ("endlessly"). We also want the function to go back and forth, so a natural guess at this point is $f(t)=\sin (t) \ldots$ but of course other choices are possible.
2. Remove two small squares from a large square

$$
\{10>\max \{|x|,|y|\}>1, \max \{|x-5|,|y-6|\}>1\} .
$$

3. As suggested it is enough to intersect the ball $\left\{x^{2}+y^{2}+z^{2} \leq 1\right\}$ with the plane $\{x+y+z=0\}$.
4. Remove from a disk a 30° angle:

$$
\left\{x^{2}+y^{2} \leq 1\right\} \backslash\{|\arctan (y / x)| \leq \pi / 6, x>0\} .
$$

5. We saw that the level sets of $(x, y) \mapsto \max \{|x|,|y|\}$ are squares (cf. 1.2.6), and we saw how to construct a pyramid using a function whose level sets were circles (cf. 1.2.4). Combining the two formulas one gets

$$
\{1-z=\max \{|x|,|y|\}, 0 \leq z \leq 1\} .
$$

