Some of these problems have a closed-answer format, similar to what you might find on the final exam. "Multiple Choice" means that zero, one or more answers can be correct.

Questions marked with $\left(^{*}\right)$ are a bit more complex, you might want to skip them at the first read. Hints available in the next page.
2.1. Examples and Non-examples of Metric spaces. Which of the following pairs are metric spaces? Prove it or provide a counterexample.

1. $(B(X), d)$, where $B(X)$ denotes the set of all bounded functions from a non-empty set X to \mathbb{R} and

$$
d(f, g):=\sup _{x \in X}|f(x)-g(x)| .
$$

2. $\left(\mathbb{Q}_{+}, d\right)$, where \mathbb{Q}_{+}are the positive rational numbers and $d(x, y):=\left|\frac{1}{x}-\frac{1}{y}\right|$.
3. $\left(\mathbb{R}^{2}, d\right)$, where $d(x, y):=\left(x_{1}-y_{1}\right)^{2}+\left|x_{2}-y_{2}\right|$.
4. $\left(\mathbb{R}^{2}, d\right)$, where $d(x, y):=\left|x_{1}-y_{1}\right|^{1 / 2}+\left|x_{2}-y_{2}\right|$.
5. $\left(\mathbb{R}^{n \times n}, d\right)$ with with $d(X, Y):=\left(\operatorname{Tr}\left\{(X-Y)^{T}(X-Y)\right\}\right)^{1 / 2}$.
6. (*) $\left(\mathbb{R}^{n \times n}, d\right)$ with

$$
d(X, Y):=\sup \left\{\left|v^{T}(X-Y) v\right|: v \in \mathbb{R}^{n},\|v\|=1\right\}
$$

and $\mathbb{R}^{n \times n}$ denoting the set of square matrices.
7. $\left(^{*}\right)\left(\mathbb{R}^{2} / \mathbb{Z}^{2}, d\right)$ where the flat 2-dimensional torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$ is the set of equivalence classes of pairs of real numbers under the equivalence relation

$$
x, y \in \mathbb{R}^{2}, x \sim y \Leftrightarrow x_{1}-y_{1} \in \mathbb{Z}, x_{2}-y_{2} \in \mathbb{Z}
$$

and $d([x],[y]):=\inf _{k, h \in \mathbb{Z}}\|x-y+(k, h)\|$, with $\|\cdot\|$ denoting the Euclidean distance and $[x] \in \mathbb{R}^{2} / \mathbb{Z}^{2}$ denoting the equivalence class of $x \in \mathbb{R}^{2}$.
2.2. Multiple choice. Take a set X and two distances d_{1}, d_{2}, so you know that $\left(X, d_{1}\right)$ and $\left(X, d_{2}\right)$ are both metric spaces. Select all the statements below that are necessarily true.
(a) $\left(X, d_{1}+4 d_{2}\right)$ is a metric space.
(b) $\left(X, d_{1} \cdot d_{2}\right)$ is a metric space.
(c) $\left(X, \max \left\{d_{1}, d_{2}\right\}\right)$ is a metric space.
(d) $\left(X, \min \left\{d_{1}, d_{2}\right\}\right)$ is a metric space.
2.3. Multiple choice. Let (X, d) be a metric space, and $Y_{1}, Y_{2} \subset X$ subsets. Select all the statements below that are necessarily true.
(a) $\overline{Y_{1} \cup Y_{2}}=\overline{Y_{1}} \cup \overline{Y_{2}}$
(b) $\overline{Y_{1}} \cap \overline{Y_{2}} \subset \overline{Y_{1} \cap Y_{2}}$
(c) $\overline{Y_{1} \cap Y_{2}} \subset \overline{Y_{1}} \cap \overline{Y_{2}}$
(d) $\overline{Y_{1} \cap Y_{2}}=\overline{Y_{1}} \cap \overline{Y_{2}}$
2.4. Multiple choice. Let (X, d) be a metric space, and $A \subset X$ a non-empty subset. We define the function "distance from A " as

$$
d(\cdot, A): X \rightarrow[0, \infty), \quad d(x, A):=\inf _{a \in A} d(x, a)
$$

Select all the statements below that are necessarily true.
(a) If A is closed and $x \in A^{c}$, then $d(x, A)>0$.
(b) The set $M:=\{x \in X: d(x, A) \geq 1\}$ is closed in X.
(c) For $x, y \in X, d(x, A) \leq d(x, y)+d(y, A)$ holds.
(d) If A° is non-empty and $x \in X$, then $d(x, A)=d\left(x, A^{\circ}\right)$.
2.5. Boundary, Interior etc. Determine the interior, closure, and boundary of the following subsets Y of \mathbb{R}, for the standard topology on \mathbb{R}. No need to justify the answer.
(1) $Y=[0,1]$
(2) $Y=\mathbb{Q}$
(3) $Y=\emptyset$
(4) $Y=(0,1)$
(5) $Y=[-1,1) \backslash\{0\}$
(6) $Y=[0, \infty)$
(7) $Y=\{0\}$
(8) $Y=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N} \backslash\{0\}\right\}$
2.6. Product of metric spaces. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be a pair of metric spaces. Recall that the set of ordered pairs (x, y) with $x \in X$ and $y \in Y$ is denoted by $X \times Y$. Consider the following functions $X \times Y \rightarrow[0, \infty)$:

$$
\begin{aligned}
d_{1}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) & :=\max \left\{d_{X}\left(x, x^{\prime}\right), d_{Y}\left(y, y^{\prime}\right)\right\} \\
d_{2}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) & :=d_{X}\left(x, x^{\prime}\right)+d_{Y}\left(y, y^{\prime}\right) \\
d_{3}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) & :=\sqrt{d_{X}\left(x, x^{\prime}\right)^{2}+d_{Y}\left(y, y^{\prime}\right)^{2}} .
\end{aligned}
$$

1. Show that they are all valid distance functions on $X \times Y$.
2. Show that they are all equivalent, i.e., there is a number $C>0$ such that

$$
\begin{aligned}
d_{1}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \leq & C d_{2}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \\
& \leq C^{2} d_{3}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \leq C^{3} d_{1}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)
\end{aligned}
$$

for all $x, x^{\prime} \in X, y, y^{\prime} \in Y$.
3. Show that a sequence $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ with respect to $\left(X \times Y, d_{3}\right)$ if and only if $x_{n} \rightarrow x$ with respect to d_{X} and $y_{n} \rightarrow y$ with respect to d_{Y}.

Hints:

2.1.3 Ignore what happens in the second variable, is there only to distract you.
2.1.4 Ignore what happens in the second variable, is there only to distract you.
2.1.5 Rewrite for a general matrix $A:=X-Y$ what the expression $\operatorname{Tr}\left\{A^{T} A\right\}^{1 / 2}$ actually means, it should look familiar...
2.1.6 See what happens if $(X-Y)$ is anti-symmetric...
2.1.7 Convince yourself first that the "inf" is in fact a "min"...
2.2.b Compare with 2.1.3...
2.2.d Play with a set of three points (a triangle)...
2.4 First convince yourself with a drawing that the name of this function is appropriate. Then use the characterization of open/closed sets with sequences...
2.6 Don't get distracted by the abstract set-up, you already know all these things for $\mathbb{R} \times \mathbb{R}$, start from there, then re-write those arguments in this general framework.

