Some of these problems have a closed-answer format, similar to what you might find on the final exam. "Multiple Choice" means that zero, one or more answers can be correct.

Questions marked with (*) are a bit more complex, you might want to skip them at the first read. Hints available in the next page.

2.1. Examples and Non-examples of Metric spaces. Which of the following pairs are metric spaces? Prove it or provide a counterexample.

1. (B(X), d), where B(X) denotes the set of all bounded functions from a non-empty set X to \mathbb{R} and

$$d(f,g) := \sup_{x \in X} |f(x) - g(x)|.$$

2. (\mathbb{Q}_+, d) , where \mathbb{Q}_+ are the positive rational numbers and $d(x, y) := \left|\frac{1}{x} - \frac{1}{y}\right|$.

- 3. (\mathbb{R}^2, d) , where $d(x, y) := (x_1 y_1)^2 + |x_2 y_2|$.
- 4. (\mathbb{R}^2, d) , where $d(x, y) := |x_1 y_1|^{1/2} + |x_2 y_2|$.
- 5. $(\mathbb{R}^{n \times n}, d)$ with with $d(X, Y) := \left(\text{Tr}\{ (X Y)^T (X Y) \} \right)^{1/2}$.
- 6. (*) $(\mathbb{R}^{n \times n}, d)$ with

$$d(X,Y) := \sup\{|v^T(X-Y)v| : v \in \mathbb{R}^n, ||v|| = 1\},\$$

and $\mathbb{R}^{n \times n}$ denoting the set of square matrices.

7. (*) $(\mathbb{R}^2/\mathbb{Z}^2, d)$ where the flat 2-dimensional torus $\mathbb{R}^2/\mathbb{Z}^2$ is the set of equivalence classes of pairs of real numbers under the equivalence relation

$$x, y \in \mathbb{R}^2, x \sim y \Leftrightarrow x_1 - y_1 \in \mathbb{Z}, x_2 - y_2 \in \mathbb{Z},$$

and $d([x], [y]) := \inf_{k,h \in \mathbb{Z}} ||x - y + (k,h)||$, with $|| \cdot ||$ denoting the Euclidean distance and $[x] \in \mathbb{R}^2/\mathbb{Z}^2$ denoting the equivalence class of $x \in \mathbb{R}^2$.

2.2. Multiple choice. Take a set X and two distances d_1, d_2 , so you know that (X, d_1) and (X, d_2) are both metric spaces. Select all the statements below that are necessarily true.

- (a) $(X, d_1 + 4d_2)$ is a metric space.
- (b) $(X, d_1 \cdot d_2)$ is a metric space.
- (c) $(X, \max\{d_1, d_2\})$ is a metric space.
- (d) $(X, \min\{d_1, d_2\})$ is a metric space.

2.3. Multiple choice. Let (X, d) be a metric space, and $Y_1, Y_2 \subset X$ subsets. Select all the statements below that are necessarily true.

(a) $\overline{Y_1 \cup Y_2} = \overline{Y_1} \cup \overline{Y_2}$

- (b) $\overline{Y_1} \cap \overline{Y_2} \subset \overline{Y_1 \cap Y_2}$
- (c) $\overline{Y_1 \cap Y_2} \subset \overline{Y_1} \cap \overline{Y_2}$

(d) $\overline{Y_1 \cap Y_2} = \overline{Y_1} \cap \overline{Y_2}$

2.4. Multiple choice. Let (X, d) be a metric space, and $A \subset X$ a non-empty subset. We define the function "distance from A" as

 $d(\cdot,A):X\to [0,\infty),\quad d(x,A):=\inf_{a\in A}d(x,a).$

Select all the statements below that are necessarily true.

- (a) If A is closed and $x \in A^c$, then d(x, A) > 0.
- (b) The set $M := \{x \in X : d(x, A) \ge 1\}$ is closed in X.
- (c) For $x, y \in X$, $d(x, A) \le d(x, y) + d(y, A)$ holds.
- (d) If A° is non-empty and $x \in X$, then $d(x, A) = d(x, A^{\circ})$.

2.5. Boundary, Interior etc. Determine the interior, closure, and boundary of the following subsets Y of \mathbb{R} , for the standard topology on \mathbb{R} . No need to justify the answer.

 $\begin{array}{ll} (1) \ Y = [0,1] \\ (3) \ Y = \emptyset \\ (5) \ Y = [-1,1) \setminus \{0\} \\ (7) \ Y = \{0\} \end{array}$ $\begin{array}{ll} (2) \ Y = \mathbb{Q} \\ (4) \ Y = (0,1) \\ (6) \ Y = [0,\infty) \\ (8) \ Y = \left\{\frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\right\} \end{array}$

2.6. Product of metric spaces. Let (X, d_X) and (Y, d_Y) be a pair of metric spaces. Recall that the set of ordered pairs (x, y) with $x \in X$ and $y \in Y$ is denoted by $X \times Y$. Consider the following functions $X \times Y \to [0, \infty)$:

$$d_1((x, y), (x', y')) := \max\{d_X(x, x'), d_Y(y, y')\}$$

$$d_2((x, y), (x', y')) := d_X(x, x') + d_Y(y, y')$$

$$d_3((x, y), (x', y')) := \sqrt{d_X(x, x')^2 + d_Y(y, y')^2}.$$

- 1. Show that they are all valid distance functions on $X \times Y$.
- 2. Show that they are all equivalent, i.e., there is a number C > 0 such that

$$d_1((x,y),(x',y')) \le Cd_2((x,y),(x',y'))$$

$$\le C^2d_3((x,y),(x',y')) \le C^3d_1((x,y),(x',y')),$$

for all $x, x' \in X, y, y' \in Y$.

3. Show that a sequence $(x_n, y_n) \to (x, y)$ with respect to $(X \times Y, d_3)$ if and only if $x_n \to x$ with respect to d_X and $y_n \to y$ with respect to d_Y .

Hints:

- 2.1.3 Ignore what happens in the second variable, is there only to distract you.
- 2.1.4 Ignore what happens in the second variable, is there only to distract you.
- 2.1.5 Rewrite for a general matrix A := X Y what the expression $\text{Tr}\{A^T A\}^{1/2}$ actually means, it should look familiar...
- 2.1.6 See what happens if (X Y) is anti-symmetric...
- 2.1.7 Convince yourself first that the "inf" is in fact a "min"...
- 2.2.b Compare with 2.1.3...
- 2.2.d Play with a set of three points (a triangle)...
 - 2.4 First convince yourself with a drawing that the name of this function is appropriate. Then use the characterization of open/closed sets with sequences...
 - 2.6 Don't get distracted by the abstract set-up, you already know all these things for $\mathbb{R} \times \mathbb{R}$, start from there, then re-write those arguments in this general framework.