Some of these problems have a closed-answer format, similar to what you might find on the final exam.

Questions marked with (*) are a bit more complex, you might want to skip them at the first read. Hints available in the next page.

3.1. BONUS PROBLEM. Give an example of:

- (a) A $\frac{1}{2}$ -Lipschitz function $f: [0,1) \to [0,1)$ that has no fixed point.
- (b) A map $f : \mathbb{R}^2 \to \mathbb{R}^2$ that has no fixed point, but it is an isometry, i.e.,

$$||f(x) - f(x')|| = ||x - x'||$$
 for all $x, x' \in \mathbb{R}^2$.

3.2. Continuity of the distance. Let (X, d) be a metric space, and endow $X \times X$ with the product distance $d_2(x, y) := d(x_1, y_1) + d(x_2, y_2)$. Show that the distance function $d: X \times X \to \mathbb{R}$ is continuous with respect to d_2 and, more precisely, that it is 1-Lipschitz. Is d also continuous with respect to the distance

$$d_1(x, y) := \max\{d(x_1, y_1), d(x_2, y_2)\}?$$

Is d also Lipschitz continuous with respect to the distance

$$d_3(x,y) := \sqrt{d(x_1,y_1)^2 + d(x_2,y_2)^2}?$$

(We are using a notation consistent with Problem 2.6).

3.3. Continuity of the composition. Let X, Y, Z be metric spaces and let $f: X \to Y$, $g: Y \to Z$ be continuous functions. Show that $g \circ f: X \to Z$ is continuous using at least two of the three equivalent definitions of continuity seen in class.

3.4. Problems at the origin. Show that there is no continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(x,y) = \frac{xy}{x^2 + y^2}$ for all $(x,y) \neq (0,0)$. On the other hand, show that there is exactly one continuous function $g: \mathbb{R}^2 \to \mathbb{R}$ such that $g(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ for all $(x,y) \neq (0,0)$.

3.5. Heine-Cantor. Let X, Y be metric spaces and let $f: X \to Y$ be a continuous. Show that if X is compact then f is uniformly continuous.

3.6. Open, closed, complete and compact. For each of the following subsets of \mathbb{R}^N say whether they are open/closed/none/compact (with respect to the standard Euclidean structure). Try to prove "efficiently" your assertions.

- 1. $E_1 := \{ x \in \mathbb{R}^3 : 0 < x_2 \le 2 \}$
- 2. $E_2 := \{x \in \mathbb{R}^n : \sin(||x||) \ge \frac{1}{4}\}$

- 3. $E_3 := \bigcup_{n \ge 1} \{ x \in \mathbb{R}^3 : x_1^4 \frac{1}{n} x_3^2 x_2^2 > \frac{1}{n}, x_1 + x_2 < 6 \}$
- 4. $E_4 := \{(x, y) \in (\mathbb{R}^n \times \mathbb{R}^n) : x \cdot y > \frac{1}{2} ||x|| ||y|| \}$
- 5. $E_5 := \{X \in \mathbb{R}^{n \times n} : \text{ the matrix } X \text{ is invertible}\}$
- 6. $E_6 := \{ X \in \mathbb{R}^{n \times n} : \text{ the matrix } X \text{ is symmetric} \}$
- 7. $E_7 := \{X \in \mathbb{R}^{n \times n} : \text{ the entries of the matrix } X \text{ are either 0 or 1} \}$
- 8. $E_8 := \{x \in \mathbb{R}^n : |x_i| \le 6, \text{ for all } 1 \le i \le n\}$
- 9. $E_9 := E_8 \times E_3 \subset \mathbb{R}^{n+3}$
- 10. $E_{10} := E_2 \cap E_8 \subset \mathbb{R}^n$

3.7. Multiple choice. Select all the statements below that are true.

- (a) A nonempty open strict subset of \mathbb{R}^n cannot be compact.
- (b) An nonempty open strict subset of \mathbb{R}^n cannot be complete.
- (c) A complete subset of \mathbb{R}^n contains all its accumulation points.
- (d) Countable union of complete subsets of \mathbb{R}^n is complete.
- (f) A subset is closed in \mathbb{R}^n if and only if it is complete as metric space itself (with the distance inherited from \mathbb{R}^n).

3.8. Multiple choice. Select all the statements below that are true.

- (a) If you spread a map of Zurich on your desk, then one point of the desk will coincide with its representation on the map (in an ideal world).
- (b) If $f: [0,1] \to [0,2]$ is $\frac{1}{2}$ -Lipschitz, then f has a fixed point.
- (c) If $f: [0,2] \to [0,1]$ is $\frac{1}{2}$ -Lipschitz, then f has a fixed point.
- (d) If $f: [0,1] \cup [2,3] \rightarrow [0,1] \cup [2,3]$ is continuously differentiable with |f'(x)| < 1 for all $x \in [0,1] \cup [2,3]$, then it has a fixed point.
- (e) (*) If $f: [0,1] \to [0,1]$ is differentiable with |f'(x)| < 1 for all $x \in (0,1)$, then it has a fixed point.

3.9. Multiple choice. Select all the statements below that are true.

- (a) The function $(x, y) \mapsto x + y$ is uniformly continuous in \mathbb{R}^2 .
- (b) The function $(x, y) \mapsto xy$ is uniformly continuous in \mathbb{R}^2 .
- (c) The function $(x, y) \mapsto x + y$ is uniformly continuous in $[0, 1]^2$.
- (d) The function $(x, y) \mapsto xy$ is uniformly continuous in $[0, 1]^2$.

Hints:

- 3.2 Compare with Problem 2.6...
- 3.4 If a function is continuous at 0 and $x_k \to 0$ and $y_k \to$, then $f(x_k)$ and $f(y_k)$ must be converging to the same value...
- 3.5 For any $\epsilon > 0$ and any $x \in X$ there is some $\delta_x > 0$ such that $f(B(x, \delta_x) \subset B(f(x), \epsilon)$... Now look at the collection $\{B(x, \delta_x)\}_{x \in X}$... Which definition of compactness seems the most useful?