Some of these problems have a closed-answer format, similar to what you might find on the final exam.

Questions marked with $(*)$ are a bit more complex, you might want to skip them at the first read. Hints available in the next page.
3.1. BONUS PROBLEM. Give an example of:
(a) A $\frac{1}{2}$-Lipschitz function $f:[0,1) \rightarrow[0,1)$ that has no fixed point.
(b) A map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that has no fixed point, but it is an isometry, i.e.,

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|=\left\|x-x^{\prime}\right\| \text { for all } x, x^{\prime} \in \mathbb{R}^{2}
$$

3.2. Continuity of the distance. Let (X, d) be a metric space, and endow $X \times X$ with the product distance $d_{2}(x, y):=d\left(x_{1}, y_{1}\right)+d\left(x_{2}, y_{2}\right)$. Show that the distance function $d: X \times X \rightarrow \mathbb{R}$ is continuous with respect to d_{2} and, more precisely, that it is 1-Lipschitz. Is d also continuous with respect to the distance

$$
d_{1}(x, y):=\max \left\{d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right\} ?
$$

Is d also Lipschitz continuous with respect to the distance

$$
d_{3}(x, y):=\sqrt{d\left(x_{1}, y_{1}\right)^{2}+d\left(x_{2}, y_{2}\right)^{2}} ?
$$

(We are using a notation consistent with Problem 2.6).
3.3. Continuity of the composition. Let X, Y, Z be metric spaces and let $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be continuous functions. Show that $g \circ f: X \rightarrow Z$ is continuous using at least two of the three equivalent definitions of continuity seen in class.
3.4. Problems at the origin. Show that there is no continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=x y /\left(x^{2}+y^{2}\right)$ for all $(x, y) \neq(0,0)$. On the other hand, show that there is exactly one continuous function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $g(x, y)=x y / \sqrt{x^{2}+y^{2}}$ for all $(x, y) \neq(0,0)$.
3.5. Heine-Cantor. Let X, Y be metric spaces and let $f: X \rightarrow Y$ be a continuous. Show that if X is compact then f is uniformly continuous.
3.6. Open, closed, complete and compact. For each of the following subsets of \mathbb{R}^{N} say whether they are open/closed/none/compact (with respect to the standard Euclidean structure). Try to prove "efficiently" your assertions.

1. $E_{1}:=\left\{x \in \mathbb{R}^{3}: 0<x_{2} \leq 2\right\}$
2. $E_{2}:=\left\{x \in \mathbb{R}^{n}: \sin (\|x\|) \geq \frac{1}{4}\right\}$
3. $E_{3}:=\bigcup_{n \geq 1}\left\{x \in \mathbb{R}^{3}: x_{1}^{4}-\frac{1}{n} x_{3}^{2}-x_{2}^{2}>\frac{1}{n}, x_{1}+x_{2}<6\right\}$
4. $E_{4}:=\left\{(x, y) \in\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right): x \cdot y>\frac{1}{2}\|x\|\|y\|\right\}$
5. $E_{5}:=\left\{X \in \mathbb{R}^{n \times n}:\right.$ the matrix X is invertible $\}$
6. $E_{6}:=\left\{X \in \mathbb{R}^{n \times n}:\right.$ the matrix X is symmetric $\}$
7. $E_{7}:=\left\{X \in \mathbb{R}^{n \times n}\right.$: the entries of the matrix X are either 0 or 1$\}$
8. $E_{8}:=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 6\right.$, for all $\left.1 \leq i \leq n\right\}$
9. $E_{9}:=E_{8} \times E_{3} \subset \mathbb{R}^{n+3}$
10. $E_{10}:=E_{2} \cap E_{8} \subset \mathbb{R}^{n}$
3.7. Multiple choice. Select all the statements below that are true.
(a) A nonempty open strict subset of \mathbb{R}^{n} cannot be compact.
(b) An nonempty open strict subset of \mathbb{R}^{n} cannot be complete.
(c) A complete subset of \mathbb{R}^{n} contains all its accumulation points.
(d) Countable union of complete subsets of \mathbb{R}^{n} is complete.
(f) A subset is closed in \mathbb{R}^{n} if and only if it is complete as metric space itself (with the distance inherited from \mathbb{R}^{n}).
3.8. Multiple choice. Select all the statements below that are true.
(a) If you spread a map of Zurich on your desk, then one point of the desk will coincide with its representation on the map (in an ideal world).
(b) If $f:[0,1] \rightarrow[0,2]$ is $\frac{1}{2}$-Lipschitz, then f has a fixed point.
(c) If $f:[0,2] \rightarrow[0,1]$ is $\frac{1}{2}$-Lipschitz, then f has a fixed point.
(d) If $f:[0,1] \cup[2,3] \rightarrow[0,1] \cup[2,3]$ is continuously differentiable with $\left|f^{\prime}(x)\right|<1$ for all $x \in[0,1] \cup[2,3]$, then it has a fixed point.
(e) $\left(^{*}\right)$ If $f:[0,1] \rightarrow[0,1]$ is differentiable with $\left|f^{\prime}(x)\right|<1$ for all $x \in(0,1)$, then it has a fixed point.
3.9. Multiple choice. Select all the statements below that are true.
(a) The function $(x, y) \mapsto x+y$ is uniformly continuous in \mathbb{R}^{2}.
(b) The function $(x, y) \mapsto x y$ is uniformly continuous in \mathbb{R}^{2}.
(c) The function $(x, y) \mapsto x+y$ is uniformly continuous in $[0,1]^{2}$.
(d) The function $(x, y) \mapsto x y$ is uniformly continuous in $[0,1]^{2}$.

Hints:

3.2 Compare with Problem 2.6...
3.4 If a function is continuous at 0 and $x_{k} \rightarrow 0$ and $y_{k} \rightarrow$, then $f\left(x_{k}\right)$ and $f\left(y_{k}\right)$ must be converging to the same value...
3.5 For any $\epsilon>0$ and any $x \in X$ there is some $\delta_{x}>0$ such that $f\left(B\left(x, \delta_{x}\right) \subset\right.$ $B(f(x), \epsilon) \ldots$ Now look at the collection $\left\{B\left(x, \delta_{x}\right)\right\}_{x \in X} \ldots$ Which definition of compactness seems the most useful?

