Some of these problems have a closed-answer format, similar to what you might find on the final exam.

Questions marked with (*) are a bit more complex, you might want to skip them at the first read. Hints available in the next page.

3.1. BONUS PROBLEM. Give an example of:

- (a) A $\frac{1}{2}$ -Lipschitz function $f: [0,1) \to [0,1)$ that has no fixed point.
- (b) A map $f : \mathbb{R}^2 \to \mathbb{R}^2$ that has no fixed point, but it is an isometry, i.e.,

$$||f(x) - f(x')|| = ||x - x'||$$
 for all $x, x' \in \mathbb{R}^2$.

3.2. Continuity of the distance. Let (X, d) be a metric space, and endow $X \times X$ with the product distance $d_2(x, y) := d(x_1, y_1) + d(x_2, y_2)$. Show that the distance function $d: X \times X \to \mathbb{R}$ is continuous with respect to d_2 and, more precisely, that it is 1-Lipschitz. Is d also continuous with respect to the distance

$$d_1(x, y) := \max\{d(x_1, y_1), d(x_2, y_2)\}?$$

Is d also Lipschitz continuous with respect to the distance

$$d_3(x,y) := \sqrt{d(x_1,y_1)^2 + d(x_2,y_2)^2}?$$

(We are using a notation consistent with Problem 2.6).

3.3. Continuity of the composition. Let X, Y, Z be metric spaces and let $f: X \to Y$, $g: Y \to Z$ be continuous functions. Show that $g \circ f: X \to Z$ is continuous using at least two of the three equivalent definitions of continuity seen in class.

3.4. Problems at the origin. Show that there is no continuous function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(x,y) = \frac{xy}{x^2 + y^2}$ for all $(x,y) \neq (0,0)$. On the other hand, show that there is exactly one continuous function $g: \mathbb{R}^2 \to \mathbb{R}$ such that $g(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ for all $(x,y) \neq (0,0)$.

3.5. Heine-Cantor. Let X, Y be metric spaces and let $f: X \to Y$ be a continuous. Show that if X is compact then f is uniformly continuous.

3.6. Open, closed, complete and compact. For each of the following subsets of \mathbb{R}^N say whether they are open/closed/none/compact (with respect to the standard Euclidean structure). Try to prove "efficiently" your assertions.

- 1. $E_1 := \{ x \in \mathbb{R}^3 : 0 < x_2 \le 2 \}$
- 2. $E_2 := \{x \in \mathbb{R}^n : \sin(||x||) \ge \frac{1}{4}\}$

- 3. $E_3 := \bigcup_{n \ge 1} \{ x \in \mathbb{R}^3 : x_1^4 \frac{1}{n} x_3^2 x_2^2 > \frac{1}{n}, x_1 + x_2 < 6 \}$
- 4. $E_4 := \{(x, y) \in (\mathbb{R}^n \times \mathbb{R}^n) : x \cdot y > \frac{1}{2} ||x|| ||y|| \}$
- 5. $E_5 := \{X \in \mathbb{R}^{n \times n} : \text{ the matrix } X \text{ is invertible}\}$
- 6. $E_6 := \{ X \in \mathbb{R}^{n \times n} : \text{ the matrix } X \text{ is symmetric} \}$
- 7. $E_7 := \{X \in \mathbb{R}^{n \times n} : \text{ the entries of the matrix } X \text{ are either 0 or 1} \}$
- 8. $E_8 := \{x \in \mathbb{R}^n : |x_i| \le 6, \text{ for all } 1 \le i \le n\}$
- 9. $E_9 := E_8 \times E_3 \subset \mathbb{R}^{n+3}$
- 10. $E_{10} := E_2 \cap E_8 \subset \mathbb{R}^n$

3.7. Multiple choice. Select all the statements below that are true.

- (a) A nonempty open strict subset of \mathbb{R}^n cannot be compact.
- (b) An nonempty open strict subset of \mathbb{R}^n cannot be complete.
- (c) A complete subset of \mathbb{R}^n contains all its accumulation points.
- (d) Countable union of complete subsets of \mathbb{R}^n is complete.
- (f) A subset is closed in \mathbb{R}^n if and only if it is complete as metric space itself (with the distance inherited from \mathbb{R}^n).

3.8. Multiple choice. Select all the statements below that are true.

- (a) If you spread a map of Zurich on your desk, then one point of the desk will coincide with its representation on the map (in an ideal world).
- (b) If $f: [0,1] \to [0,2]$ is $\frac{1}{2}$ -Lipschitz, then f has a fixed point.
- (c) If $f: [0,2] \to [0,1]$ is $\frac{1}{2}$ -Lipschitz, then f has a fixed point.
- (d) If $f: [0,1] \cup [2,3] \rightarrow [0,1] \cup [2,3]$ is continuously differentiable with |f'(x)| < 1 for all $x \in [0,1] \cup [2,3]$, then it has a fixed point.
- (e) (*) If $f: [0,1] \to [0,1]$ is differentiable with |f'(x)| < 1 for all $x \in (0,1)$, then it has a fixed point.

3.9. Multiple choice. Select all the statements below that are true.

- (a) The function $(x, y) \mapsto x + y$ is uniformly continuous in \mathbb{R}^2 .
- (b) The function $(x, y) \mapsto xy$ is uniformly continuous in \mathbb{R}^2 .
- (c) The function $(x, y) \mapsto x + y$ is uniformly continuous in $[0, 1]^2$.
- (d) The function $(x, y) \mapsto xy$ is uniformly continuous in $[0, 1]^2$.

Hints:

- 3.2 Compare with Problem 2.6...
- 3.4 If a function is continuous at 0 and $x_k \to 0$ and $y_k \to$, then $f(x_k)$ and $f(y_k)$ must be converging to the same value...
- 3.5 For any $\epsilon > 0$ and any $x \in X$ there is some $\delta_x > 0$ such that $f(B(x, \delta_x) \subset B(f(x), \epsilon)$... Now look at the collection $\{B(x, \delta_x)\}_{x \in X}$... Which definition of compactness seems the most useful?

3. Solutions

Solution of 3.1: (a) $f(x) := \frac{1+x}{2}$. (b) f(x,y) := (x+1,y).

Solution of 3.2: Recall that the triangular inequality for d entails

$$|d(x,y) - d(x',y)| \le d(x,x') \text{ for all } x, x', y \in X.$$

So we have for all $x, x', y, y' \in X$ that

$$\begin{aligned} |d(x,x') - d(y,y')| &= |d(x,x') - d(x,y') + d(x,y') - d(y,y')| \\ &\leq |d(x,x') - d(x,y')| + |d(x,y') - d(y,y')| \\ &\leq d(x',y') + d(x,y) =: d_2((x,x'),(y,y')), \end{aligned}$$

which means that d is 1-Lipschitz with respect to d_2 . In particular it is continuous.

The answer to both questions is yes. We saw in Problem Set 2.6 that d_1, d_2, d_3 are all comparable distances on the product $X \times X$. So any function which is (Lipschitz) continuous with respect to one of them is also (Lipschitz) continuous with respect to the others (possibly with a larger Lipschitz constant).

Solution of 3.3: Topological. Let U be an open set in Z, then $g^{-1}(U)$ is open in Y, since g is topologically continuous. Then also $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is open in X, because also f is topologically continuous. Thus we showed that for all open sets $U \subset Z$, also $(g \circ f)^{-1}(U)$ is open. This means that $g \circ f : X \to Z$ is topologically continuous.

Sequential. Let (x_n) be a sequence in X converging to some $x \in X$. We need to show that $(g \circ f)(x_n)$ converges to $(g \circ f)(x)$ in Z.

Since f is continuous, $f(x_n)$ converges to f(x) in Y. Similarly, as g is continuous, $g(f(x_n))$ converges to g(f(x)) in Z. Therefore, $g \circ f : X \to Z$ is sequentially continuous.

Solution of 3.4: Assume such continuous f exists, then it must be sequentially continuous. Lets us prove that this is never the case exhibiting two sequences converging to the origin along which f takes completely different values. Pick any sequence $t_k \downarrow 0$, then:

$$(t_k, t_k) \to (0, 0)$$
 and $(t_k, -t_k) \to (0, 0)$, but $\lim_k f(t_k, t_k) = \frac{1}{2} \neq -\frac{1}{2} = \lim_k f(t_k, -t_k)$.

First of all let us show that if such g exists it is necessarily given by

$$g(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } x = y = 0. \end{cases}$$
(1)

In fact $\lim_k g(1/k, 1/k) = \lim_k 1/k = 0$, so this can be the only value g takes at the origin.

Let us now check that the g defined by (1) is indeed continuous at the origin (continuity at the points outside the origin is obvious). Take any nonzero sequences $x_k, y_k \to 0$, then

$$|g(x_k, y_k)| = \frac{|x_k y_k|}{\sqrt{x_k^2 + y_k^2}} \le \frac{x_k^2 + y_k^2}{\sqrt{x_k^2 + y_k^2}} \le \sqrt{x_k^2 + y_k^2} \to 0.$$

Solution of 3.5: See Proposition 9.77 in the notes.

Solution of 3.6:

- 1. Not open, since $(0, 2+\epsilon^2, 0)$ lies outside E_1 , but $(0, 2-\epsilon^2, 0)$ lies inside E_1 . Not closed, since $(0, \epsilon^2, 0)$ lies inside E_1 , but the limit point as $\epsilon \to 0$ does not: $(0, 0, 0, \notin E_1)$. Not compact otherwise would be closed.
- 2. Notice that $E_2 = f^{-1}([1/4, \infty))$ with $f \colon \mathbb{R}^n \to \mathbb{R}$ give by $f(x) = \sin ||x||$. Now f is continuous, $[1/4, \infty)$ is closed in \mathbb{R} , so E_2 is closed. On the other hand \mathbb{R}^n is connected, so E_2 cannot be also open since:

$$(\pi/2, 0, \dots, 0) \in E_2, \quad (0, \dots, 0) \notin E_2.$$

Finally, E_2 cannot be compact because it is not bounded as $x_k := (2k\pi + \pi/2, 0, \dots, 0) \in E_2$ for all $k \in \mathbb{N}$.

3. Define the continuous functions $g, f_n \colon \mathbb{R}^3 \to \mathbb{R}$ as

$$f_n(x) := x_1^4 - \frac{1}{n}x_3^2 - x_2^2 - \frac{1}{n}, g(x) := 6 - x_1 - x_2.$$

Then we can write

$$E_3 := \bigcup_{n \ge 1} f_n^{-1}((-\infty, 0)) \cap g^{-1}((-\infty, 0)) = \left\{ \bigcup_{n \ge 1} f_n^{-1}((-\infty, 0)) \right\} \cap g^{-1}((-\infty, 0)),$$

the term in curly braces is open (union of open) and so is E_3 (we intersect only once with another open set). Notice that $(1 + t, -t, 0) \in E_3$ for all $t \ge 1$ so E_3 is unbounded and it cannot be compact (and it is nonempty). On the other hand $(0, 6, 1) \notin E_3$, so its complementary cannot be empty, hence E_3 is not closed (\mathbb{R}^n is connected again).

4. Similarly, open using the continuous function

$$(x,y) \mapsto x \cdot y - \|x\| \|y\|,$$

unbounded by homogeneity $(x, y) \in E_4 \Leftrightarrow (tx, ty) \in E_4$. Not empty as $(e_n, e_n) \in E_4$, not everything as $(0, v) \notin E_4$.

5. Invertibility can be expressed as $E_5 = \det^{-1}(\mathbb{R} \setminus \{0\})$, since the determinant is a polynomial function of the entries it is continuous, so E_5 is open. Again is unbounded by homogeneity and not everything (not all matrices are invertible).

- 6. $E_6 = f^{-1}(\{0\})$ with $f(X) = \sum_{i,j} |X_{ij} X_{ji}|^2$. So E_6 is closed. Cannot be open (not all matrices are symmetric, there is at least one symmetric matrix) nor compact (one can find symmetric matrices with arbitrarily large entries).
- 7. This is a finite set of "points" in $\mathbb{R}^{n \times n}$. Hence it is compact, closed and not open.
- 8. $E_8 = f^{-1}(-\infty, 6]$ with $f(x) = \max_{1 \le i \le n} |x_i|$ so it is closed. It is not everything nor nothing, so it is not open. Furthermore it is compact since it is clearly bounded:

$$x \in E_8 \Rightarrow ||x||^2 \le \sum_{i=1}^n 6^2 \le 100^n.$$

9. Since E_8 is unbounded so is E_9 , so it cannot be compact. Being a product of and open and a compact set we expect it to be none of them. If it was open, then write it as union of open balls $\{B(x_i, r_i)_{i \in I} \subset \mathbb{R}^{n+3}\}$. Then the balls

$$B' := B(x_i, r_i) \cap \{x_{n+1} = \ldots = x_{n+3}0\} \subset \mathbb{R}^3$$

would be open and contained in E_8 , so E_8 would be open, contradiction.

Pick a sequence $\{x_k\} \subset E_3 \subset \mathbb{R}^n$ that converges to some $z \in \mathbb{R}^n \setminus E_3$. Then the sequence $x'_k := (x_k, 0, 0, 0) \in \mathbb{R}^{n+3}$ is convergent to (z, 0, 0, 0). If E_9 was closed we would get $(z, 0, 0, 0) \in E_3 \times E_8$, hence $z \in E_3$, contradiction.

10. Being a intersection of a closed and a compact set it is compact and so closed. It is not empty as $(\pi/2, 0, \ldots, 0 \in E_{10})$, so it is not open.

Solution of 3.7:

(a) True. Let U be such a set, then pick any $z \in \partial U$ and let $f \in C(U)$ be defined by $f(x) := ||x - z||^{-1}$. If U was compact f would be bounded, we can pick a sequence $x_k \in U$ such that $x_k \to z$, so $f(x_k) \to \infty$, contradiction.

We remark that ∂U is not empty otherwise $U = \overline{U}$ would be clopen, but it is not empty nor the whole \mathbb{R}^n by assumption.

- (b) True. Let U be such a set, pick $z \in \partial U$ and a sequence $x_k \in U$ such that $x_k \to z$. While $\{x_k\}$ is Cauchy (is convergent in \mathbb{R}^n) its limit point does not belong to U.
- (c) True, it must be closed as subset of \mathbb{R}^n .
- (d) False. A finite subset of \mathbb{R}^n is always compact, thus complete, but \mathbb{Q} is not complete, while being a countable union of points.
- (f) True. A sequence in \mathbb{R}^n converges if and only if it is Cauchy, so, for a set, containing its accumulation points or the limits of its Cauchy sequences is the same property.

Solution of 3.8:

- (a) True, at least if your desk is in Zurich. The map (literally) maps Zurich to a piece of paper, so point which in reality are hundreds of meters apart are distant few millimeters in the map. So the Lipschitz constant is approximately 1/10000. Furthermore your desk is in Zurich, so the map sends the domain in itself (if you are in e-learning from Singapore then it it is false).
- (b) False, $f(x) := \frac{x}{10}$ is a counterexample.
- (c) True, Banach's fixed point theorem applies since $[0,1] \subset [0,2]$.
- (d) False, take f that swaps $[0, 1] \leftrightarrow [2, 3]$ contracting them of a factor 1/10. In symbols:

$$f(x) := 2 + \frac{x}{10}$$
 for all $x \in [0, 1]$, $f(x) := x - 2 + \frac{x}{10}$ for all $x \in [2, 3]$.

(e) True. Take $\epsilon > 0$ and consider $f_{\epsilon}(x) := (1 - \epsilon)f(x)$. Notice that $f_{\epsilon}([0, 1]) \subset [0, 1 - \epsilon] \subset [0, 1]$. Also, $|f'_{\epsilon}(x)| < 1 - \epsilon$, so by the Mean Value Theorem it is a contraction (the interval is connected). So Banach's fixed point theorem gives $x_{\epsilon} \in [0, 1]$ such that

$$x_{\epsilon} = f_{\epsilon}(x_{\epsilon}) = (1 - \epsilon)f(x_{\epsilon}).$$

By compactness, there is $\epsilon_k \to 0$ and $x_0 \in [0, 1]$ such that $x_{\epsilon_k} \to x_0$, so we can pass this equation to the limit and find that x_0 is a fixed point.

Actually, applying the intermediate value theorem to the function g(x) - x, one can show that every continuous function $g: [0, 1] \to [0, 1]$ has a fixed point.

Solution of 3.9:

(a) True, it is in fact Lipschitz continuous:

$$|(x+y) - (x'+y')| \le |x-x'| + |y-y'| \le 2\sqrt{|x-x'|^2 + |y-y'|^2},$$

where we used $a + b \le 2\sqrt{a^2 + b^2}$.

(b) False. Let f(x, y) := xy. Consider for some $\delta > 0$ fixed, the balls $B_t := B((t, t), \delta)$ centered at the point (t, t). The size of the interval $f(B_t)$ must go to infinity as $t \to \infty$, so it is impossible that it stays contained in $[-1+t^2, t^2+1] = B_1(f(t, t)) \subset \mathbb{R}$, violating the definition of uniform continuity with $\epsilon = 1$.

Check: $f(t, t \pm \delta) = t^2 \pm 2t\delta + \delta^2$, so $f(B_t) \subset \mathbb{R}$ is an interval (it is connected) that contains the interval $[t^2 - 2t\delta + \delta^2, t^2 + 2t\delta + \delta^2]$, whose length goes to infinity as $t \to \infty$ with δ fixed.

- (c) True because of the Heine-Cantor Theorem 3.5.
- (d) True because of the Heine-Cantor Theorem 3.5.