Some of these problems have a closed-answer format, similar to what you might find on the final exam.

Questions marked with $(*)$ are a bit more complex, you might want to skip them at the first read. Hints available in the next page.
3.1. BONUS PROBLEM. Give an example of:
(a) A $\frac{1}{2}$-Lipschitz function $f:[0,1) \rightarrow[0,1)$ that has no fixed point.
(b) A map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that has no fixed point, but it is an isometry, i.e.,

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\|=\left\|x-x^{\prime}\right\| \text { for all } x, x^{\prime} \in \mathbb{R}^{2}
$$

3.2. Continuity of the distance. Let (X, d) be a metric space, and endow $X \times X$ with the product distance $d_{2}(x, y):=d\left(x_{1}, y_{1}\right)+d\left(x_{2}, y_{2}\right)$. Show that the distance function $d: X \times X \rightarrow \mathbb{R}$ is continuous with respect to d_{2} and, more precisely, that it is 1-Lipschitz. Is d also continuous with respect to the distance

$$
d_{1}(x, y):=\max \left\{d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right\} ?
$$

Is d also Lipschitz continuous with respect to the distance

$$
d_{3}(x, y):=\sqrt{d\left(x_{1}, y_{1}\right)^{2}+d\left(x_{2}, y_{2}\right)^{2}} ?
$$

(We are using a notation consistent with Problem 2.6).
3.3. Continuity of the composition. Let X, Y, Z be metric spaces and let $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be continuous functions. Show that $g \circ f: X \rightarrow Z$ is continuous using at least two of the three equivalent definitions of continuity seen in class.
3.4. Problems at the origin. Show that there is no continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(x, y)=x y /\left(x^{2}+y^{2}\right)$ for all $(x, y) \neq(0,0)$. On the other hand, show that there is exactly one continuous function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $g(x, y)=x y / \sqrt{x^{2}+y^{2}}$ for all $(x, y) \neq(0,0)$.
3.5. Heine-Cantor. Let X, Y be metric spaces and let $f: X \rightarrow Y$ be a continuous. Show that if X is compact then f is uniformly continuous.
3.6. Open, closed, complete and compact. For each of the following subsets of \mathbb{R}^{N} say whether they are open/closed/none/compact (with respect to the standard Euclidean structure). Try to prove "efficiently" your assertions.

1. $E_{1}:=\left\{x \in \mathbb{R}^{3}: 0<x_{2} \leq 2\right\}$
2. $E_{2}:=\left\{x \in \mathbb{R}^{n}: \sin (\|x\|) \geq \frac{1}{4}\right\}$
3. $E_{3}:=\bigcup_{n \geq 1}\left\{x \in \mathbb{R}^{3}: x_{1}^{4}-\frac{1}{n} x_{3}^{2}-x_{2}^{2}>\frac{1}{n}, x_{1}+x_{2}<6\right\}$
4. $E_{4}:=\left\{(x, y) \in\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right): x \cdot y>\frac{1}{2}\|x\|\|y\|\right\}$
5. $E_{5}:=\left\{X \in \mathbb{R}^{n \times n}:\right.$ the matrix X is invertible $\}$
6. $E_{6}:=\left\{X \in \mathbb{R}^{n \times n}:\right.$ the matrix X is symmetric $\}$
7. $E_{7}:=\left\{X \in \mathbb{R}^{n \times n}\right.$: the entries of the matrix X are either 0 or 1$\}$
8. $E_{8}:=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 6\right.$, for all $\left.1 \leq i \leq n\right\}$
9. $E_{9}:=E_{8} \times E_{3} \subset \mathbb{R}^{n+3}$
10. $E_{10}:=E_{2} \cap E_{8} \subset \mathbb{R}^{n}$
3.7. Multiple choice. Select all the statements below that are true.
(a) A nonempty open strict subset of \mathbb{R}^{n} cannot be compact.
(b) An nonempty open strict subset of \mathbb{R}^{n} cannot be complete.
(c) A complete subset of \mathbb{R}^{n} contains all its accumulation points.
(d) Countable union of complete subsets of \mathbb{R}^{n} is complete.
(f) A subset is closed in \mathbb{R}^{n} if and only if it is complete as metric space itself (with the distance inherited from \mathbb{R}^{n}).
3.8. Multiple choice. Select all the statements below that are true.
(a) If you spread a map of Zurich on your desk, then one point of the desk will coincide with its representation on the map (in an ideal world).
(b) If $f:[0,1] \rightarrow[0,2]$ is $\frac{1}{2}$-Lipschitz, then f has a fixed point.
(c) If $f:[0,2] \rightarrow[0,1]$ is $\frac{1}{2}$-Lipschitz, then f has a fixed point.
(d) If $f:[0,1] \cup[2,3] \rightarrow[0,1] \cup[2,3]$ is continuously differentiable with $\left|f^{\prime}(x)\right|<1$ for all $x \in[0,1] \cup[2,3]$, then it has a fixed point.
(e) $\left(^{*}\right)$ If $f:[0,1] \rightarrow[0,1]$ is differentiable with $\left|f^{\prime}(x)\right|<1$ for all $x \in(0,1)$, then it has a fixed point.
3.9. Multiple choice. Select all the statements below that are true.
(a) The function $(x, y) \mapsto x+y$ is uniformly continuous in \mathbb{R}^{2}.
(b) The function $(x, y) \mapsto x y$ is uniformly continuous in \mathbb{R}^{2}.
(c) The function $(x, y) \mapsto x+y$ is uniformly continuous in $[0,1]^{2}$.
(d) The function $(x, y) \mapsto x y$ is uniformly continuous in $[0,1]^{2}$.

Hints:

3.2 Compare with Problem 2.6...
3.4 If a function is continuous at 0 and $x_{k} \rightarrow 0$ and $y_{k} \rightarrow$, then $f\left(x_{k}\right)$ and $f\left(y_{k}\right)$ must be converging to the same value...
3.5 For any $\epsilon>0$ and any $x \in X$ there is some $\delta_{x}>0$ such that $f\left(B\left(x, \delta_{x}\right) \subset\right.$ $B(f(x), \epsilon) \ldots$ Now look at the collection $\left\{B\left(x, \delta_{x}\right)\right\}_{x \in X} \ldots$ Which definition of compactness seems the most useful?

3. Solutions

Solution of 3.1: (a) $f(x):=\frac{1+x}{2}$. (b) $f(x, y):=(x+1, y)$.

Solution of 3.2: Recall that the triangular inequality for d entails

$$
\left|d(x, y)-d\left(x^{\prime}, y\right)\right| \leq d\left(x, x^{\prime}\right) \text { for all } x, x^{\prime}, y \in X
$$

So we have for all $x, x^{\prime}, y, y^{\prime} \in X$ that

$$
\begin{aligned}
\left|d\left(x, x^{\prime}\right)-d\left(y, y^{\prime}\right)\right| & =\left|d\left(x, x^{\prime}\right)-d\left(x, y^{\prime}\right)+d\left(x, y^{\prime}\right)-d\left(y, y^{\prime}\right)\right| \\
& \leq\left|d\left(x, x^{\prime}\right)-d\left(x, y^{\prime}\right)\right|+\left|d\left(x, y^{\prime}\right)-d\left(y, y^{\prime}\right)\right| \\
& \leq d\left(x^{\prime}, y^{\prime}\right)+d(x, y)=: d_{2}\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right)
\end{aligned}
$$

which means that d is 1 -Lipschitz with respect to d_{2}. In particular it is continuous.
The answer to both questions is yes. We saw in Problem Set 2.6 that d_{1}, d_{2}, d_{3} are all comparable distances on the product $X \times X$. So any function which is (Lipschitz) continuous with respect to one of them is also (Lipschitz) continuous with respect to the others (possibly with a larger Lipschitz constant).

Solution of 3.3: Topological. Let U be an open set in Z, then $g^{-1}(U)$ is open in Y, since g is topologically continuous. Then also $f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U)$ is open in X, because also f is topologically continuous. Thus we showed that for all open sets $U \subset Z$, also $(g \circ f)^{-1}(U)$ is open. This means that $g \circ f: X \rightarrow Z$ is topologically continuous.
Sequential. Let $\left(x_{n}\right)$ be a sequence in X converging to some $x \in X$. We need to show that $(g \circ f)\left(x_{n}\right)$ converges to $(g \circ f)(x)$ in Z.
Since f is continuous, $f\left(x_{n}\right)$ converges to $f(x)$ in Y. Similarly, as g is continuous, $g\left(f\left(x_{n}\right)\right)$ converges to $g(f(x))$ in Z. Therefore, $g \circ f: X \rightarrow Z$ is sequentially continuous.

Solution of 3.4: Assume such continuous f exists, then it must be sequentially continuous. Lets us prove that this is never the case exhibiting two sequences converging to the origin along which f takes completely different values. Pick any sequence $t_{k} \downarrow 0$, then:

$$
\left(t_{k}, t_{k}\right) \rightarrow(0,0) \text { and }\left(t_{k},-t_{k}\right) \rightarrow(0,0), \text { but } \lim _{k} f\left(t_{k}, t_{k}\right)=\frac{1}{2} \neq-\frac{1}{2}=\lim _{k} f\left(t_{k},-t_{k}\right) .
$$

First of all let us show that if such g exists it is necessarily given by

$$
g(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \tag{1}\\ 0 & \text { if } x=y=0\end{cases}
$$

In fact $\lim _{k} g(1 / k, 1 / k)=\lim _{k} 1 / k=0$, so this can be the only value g takes at the origin.

Let us now check that the g defined by (1) is indeed continuous at the origin (continuity at the points outside the origin is obvious). Take any nonzero sequences $x_{k}, y_{k} \rightarrow 0$, then

$$
\left|g\left(x_{k}, y_{k}\right)\right|=\frac{\left|x_{k} y_{k}\right|}{\sqrt{x_{k}^{2}+y_{k}^{2}}} \leq \frac{x_{k}^{2}+y_{k}^{2}}{\sqrt{x_{k}^{2}+y_{k}^{2}}} \leq \sqrt{x_{k}^{2}+y_{k}^{2}} \rightarrow 0 .
$$

Solution of 3.5: See Proposition 9.77 in the notes.

Solution of 3.6:

1. Not open, since $\left(0,2+\epsilon^{2}, 0\right)$ lies outside E_{1}, but $\left(0,2-\epsilon^{2}, 0\right)$ lies inside E_{1}. Not closed, since $\left(0, \epsilon^{2}, 0\right)$ lies inside E_{1}, but the limit point as $\epsilon \rightarrow 0$ does not: $\left(0,0,0, \notin E_{1}\right.$. Not compact otherwise would be closed.
2. Notice that $E_{2}=f^{-1}([1 / 4, \infty))$ with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ give by $f(x)=\sin \|x\|$. Now f is continuous, $[1 / 4, \infty)$ is closed in \mathbb{R}, so E_{2} is closed. On the other hand \mathbb{R}^{n} is connected, so E_{2} cannot be also open since:

$$
(\pi / 2,0, \ldots, 0) \in E_{2}, \quad(0, \ldots, 0) \notin E_{2} .
$$

Finally, E_{2} cannot be compact because it is not bounded as $x_{k}:=(2 k \pi+\pi / 2,0, \ldots, 0) \in$ E_{2} for all $k \in \mathbb{N}$.
3. Define the continuous functions $g, f_{n}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ as

$$
f_{n}(x):=x_{1}^{4}-\frac{1}{n} x_{3}^{2}-x_{2}^{2}-\frac{1}{n}, g(x):=6-x_{1}-x_{2} .
$$

Then we can write

$$
E_{3}:=\bigcup_{n \geq 1} f_{n}^{-1}((-\infty, 0)) \cap g^{-1}((-\infty, 0))=\left\{\bigcup_{n \geq 1} f_{n}^{-1}((-\infty, 0))\right\} \cap g^{-1}((-\infty, 0)),
$$

the term in curly braces is open (union of open) and so is E_{3} (we intersect only once with another open set). Notice that $(1+t,-t, 0) \in E_{3}$ for all $t \geq 1$ so E_{3} is unbounded and it cannot be compact (and it is nonempty). On the other hand $(0,6,1) \notin E_{3}$, so its complementary cannot be empty, hence E_{3} is not closed (\mathbb{R}^{n} is connected again).
4. Similarly, open using the continuous function

$$
(x, y) \mapsto x \cdot y-\|x\|\|y\|,
$$

unbounded by homogeneity $(x, y) \in E_{4} \Leftrightarrow(t x, t y) \in E_{4}$. Not empty as $\left(e_{n}, e_{n}\right) \in E_{4}$, not everything as $(0, v) \notin E_{4}$.
5. Invertibility can be expressed as $E_{5}=\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})$, since the determinant is a polynomial function of the entries it is continuous, so E_{5} is open. Again is unbounded by homogeneity and not everything (not all matrices are invertible).
6. $E_{6}=f^{-1}(\{0\})$ with $f(X)=\sum_{i, j}\left|X_{i j}-X_{j i}\right|^{2}$. So E_{6} is closed. Cannot be open (not all matrices are symmetric, there is at least one symmetric matrix) nor compact (one can find symmetric matrices with arbitrarily large entries).
7. This is a finite set of "points" in $\mathbb{R}^{n \times n}$. Hence it is compact, closed and not open.
8. $\left.E_{8}=f^{-1}(-\infty, 6]\right)$ with $f(x)=\max _{1 \leq i \leq n}\left|x_{i}\right|$ so it is closed. It is not everything nor nothing, so it is not open. Furthermore it is compact since it is clearly bounded:

$$
x \in E_{8} \Rightarrow\|x\|^{2} \leq \sum_{i=1}^{n} 6^{2} \leq 100^{n}
$$

9. Since E_{8} is unbounded so is E_{9}, so it cannot be compact. Being a product of and open and a compact set we expect it to be none of them. If it was open, then write it as union of open balls $\left\{B\left(x_{i}, r_{i}\right\}_{i \in I} \subset \mathbb{R}^{n+3}\right.$. Then the balls

$$
B^{\prime}:=B\left(x_{i}, r_{i}\right) \cap\left\{x_{n+1}=\ldots=x_{n+3} 0\right\} \subset \mathbb{R}^{3}
$$

would be open and contained in E_{8}, so E_{8} would be open, contradiction.
Pick a sequence $\left\{x_{k}\right\} \subset E_{3} \subset \mathbb{R}^{n}$ that converges to some $z \in \mathbb{R}^{n} \backslash E_{3}$. Then the sequence $x_{k}^{\prime}:=\left(x_{k}, 0,0,0\right) \in \mathbb{R}^{n+3}$ is convergent to $(z, 0,0,0)$. If E_{9} was closed we would get $(z, 0,0,0) \in E_{3} \times E_{8}$, hence $z \in E_{3}$, contradiction.
10. Being a intersection of a closed and a compact set it is compact and so closed. It is not empty as $\left(\pi / 2,0, \ldots, 0 \in E_{10}\right.$, so it is not open.

Solution of 3.7:

(a) True. Let U be such a set, then pick any $z \in \partial U$ and let $f \in C(U)$ be defined by $f(x):=\|x-z\|^{-1}$. If U was compact f would be bounded, we can pick a sequence $x_{k} \in U$ such that $x_{k} \rightarrow z$, so $f\left(x_{k}\right) \rightarrow \infty$, contradiction.
We remark that ∂U is not empty otherwise $U=\bar{U}$ would be clopen, but it is not empty nor the whole \mathbb{R}^{n} by assumption.
(b) True. Let U be such a set, pick $z \in \partial U$ and a sequence $x_{k} \in U$ such that $x_{k} \rightarrow z$. While $\left\{x_{k}\right\}$ is Cauchy (is convergent in \mathbb{R}^{n}) its limit point does not belong to U.
(c) True, it must be closed as subset of \mathbb{R}^{n}.
(d) False. A finite subset of \mathbb{R}^{n} is always compact, thus complete, but \mathbb{Q} is not complete, while being a countable union of points.
(f) True. A sequence in \mathbb{R}^{n} converges if and only if it is Cauchy, so, for a set, containing its accumulation points or the limits of its Cauchy sequences is the same property.

Solution of 3.8:

(a) True, at least if your desk is in Zurich. The map (literally) maps Zurich to a piece of paper, so point which in reality are hundreds of meters apart are distant few millimeters in the map. So the Lipschitz constant is approximately $1 / 10000$. Furthermore your desk is in Zurich, so the map sends the domain in itself (if you are in e-learning from Singapore then it it is false).
(b) False, $f(x):=\frac{x}{10}$ is a counterexample.
(c) True, Banach's fixed point theorem applies since $[0,1] \subset[0,2]$.
(d) False, take f that swaps $[0,1] \leftrightarrow[2,3]$ contracting them of a factor $1 / 10$. In symbols:

$$
f(x):=2+\frac{x}{10} \text { for all } x \in[0,1], \quad f(x):=x-2+\frac{x}{10} \text { for all } x \in[2,3] .
$$

(e) True. Take $\epsilon>0$ and consider $f_{\epsilon}(x):=(1-\epsilon) f(x)$. Notice that $f_{\epsilon}([0,1]) \subset$ $[0,1-\epsilon] \subset[0,1]$. Also, $\left|f_{\epsilon}^{\prime}(x)\right|<1-\epsilon$, so by the Mean Value Theorem it is a contraction (the interval is connected). So Banach's fixed point theorem gives $x_{\epsilon} \in[0,1]$ such that

$$
x_{\epsilon}=f_{\epsilon}\left(x_{\epsilon}\right)=(1-\epsilon) f\left(x_{\epsilon}\right) .
$$

By compactness, there is $\epsilon_{k} \rightarrow 0$ and $x_{0} \in[0,1]$ such that $x_{\epsilon_{k}} \rightarrow x_{0}$, so we can pass this equation to the limit and find that x_{0} is a fixed point.

Actually, applying the intermediate value theorem to the function $g(x)-x$, one can show that every continuous function $g:[0,1] \rightarrow[0,1]$ has a fixed point.

Solution of 3.9:

(a) True, it is in fact Lipschitz continuous:

$$
\left|(x+y)-\left(x^{\prime}+y^{\prime}\right)\right| \leq\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right| \leq 2 \sqrt{\left|x-x^{\prime}\right|^{2}+\left|y-y^{\prime}\right|^{2}}
$$

where we used $a+b \leq 2 \sqrt{a^{2}+b^{2}}$.
(b) False. Let $f(x, y):=x y$. Consider for some $\delta>0$ fixed, the balls $B_{t}:=B((t, t), \delta)$ centered at the point (t, t). The size of the interval $f\left(B_{t}\right)$ must go to infinity as $t \rightarrow \infty$, so it is impossible that it stays contained in $\left[-1+t^{2}, t^{2}+1\right]=B_{1}(f(t, t)) \subset \mathbb{R}$, violating the definition of uniform continuity with $\epsilon=1$.

Check: $f(t, t \pm \delta)=t^{2} \pm 2 t \delta+\delta^{2}$, so $f\left(B_{t}\right) \subset \mathbb{R}$ is an interval (it is connected) that contains the interval $\left[t^{2}-2 t \delta+\delta^{2}, t^{2}+2 t \delta+\delta^{2}\right]$, whose length goes to infinity as $t \rightarrow \infty$ with δ fixed.
(c) True because of the Heine-Cantor Theorem 3.5.
(d) True because of the Heine-Cantor Theorem 3.5.

