Questions marked with $\left(^{*}\right)$ are a bit more complex, you might want to skip them at the first read. Hints available in the next page.
4.1. BONUS PROBLEM. Consider the function $u:(x, y) \mapsto x^{\sin (y)}$, defined for $(x, y) \in(0, \infty) \times \mathbb{R} \subset \mathbb{R}^{2}$. Compute $\partial_{x} u$ and $\partial_{y} u$.
4.2. Connected graphs. Let $U \subset \mathbb{R}^{n}$ be open and connected and let $f \in C^{1}\left(U, \mathbb{R}^{m}\right)$. Show that its graph

$$
\Gamma_{f}:=\{(x, f(x)): x \in U\}
$$

is a connected subset of $\mathbb{R}^{n} \times \mathbb{R}^{m}$.
4.3. \boldsymbol{p}-norms. For $p \geq 1$ and $x \in \mathbb{R}^{n}$ define the p-norm of x as

$$
|x|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} .
$$

1. For $n=2$ and $p=1,2,10$ sketch the sets $\left\{x \in \mathbb{R}^{2}:|x|_{p} \leq 1\right\}$.
2. For a given $x \in \mathbb{R}^{n}$, compute the limit $|x|_{\infty}:=\lim _{p \rightarrow \infty}|x|_{p}$.
3. Using an appropriate inequality that you have seen in class, prove that

$$
\left(\sum_{i=1}^{n} a_{i}^{p-1} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)\left(\sum_{i=1}^{n} a_{i}^{p-2} b_{i}^{2}\right)
$$

whenever a_{i}, b_{i} are n-tuples of positive numbers.
4. Fix $x, y \in \mathbb{R}^{n}$ and consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
f(t):=|t x+(1-t) y|_{p}=\left(\sum_{i=1}^{n}\left|t x_{i}+(1-t) y_{i}\right|^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

Show that f is convex. You may assume that the coordinates of x and y are all strictly positive and use the inequality of the previous point.
5. Deduce from the previous point that the triangular inequality holds, i.e.,

$$
|x+y|_{p} \leq|x|_{p}+|y|_{p} \quad \text { for all } x, y \in \mathbb{R}^{n} .
$$

6. What happens for $p \in(0,1)$?
4.4. \boldsymbol{p}-means. For $x \in \mathbb{R}^{n}$ with positive coordinates and $p \neq 0$ define the p-mean as

$$
\mu_{p}(x):=\left(\frac{x_{1}^{p}+\ldots+x_{n}^{p}}{n}\right)^{1 / p} .
$$

1. Compute the limits $p \rightarrow \pm \infty, p \rightarrow 0$ and define accordingly

$$
\mu_{-\infty}(x), \quad \mu_{0}(x), \quad \mu_{+\infty}(x)
$$

2. For any n-tuple of numbers $a_{i}>0$ show that

$$
\sum_{i=1}^{n} \frac{a_{i}}{a_{1}+\ldots+a_{n}} \log \left(a_{i}\right) \geq \log \left(\frac{a_{1} \ldots+a_{n}}{n}\right) .
$$

3. For a fixed x, show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$, given by $f(t):=\mu_{t}(x)$, is continuous and increasing.
4. Prove the Arithmetic-Geometric inequality and Arithmetic-Quadratic inequality:

$$
n\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq x_{1}+\ldots+x_{n}, \quad\left(x_{1}+\ldots+x_{n}\right)^{2} \leq n\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)
$$

$5 .\left({ }^{*}\right)$ Is f continuously differentiable in the whole \mathbb{R} ?
4.5. All norms are equivalent in \mathbb{R}^{n}. Let $|\cdot|$ denote the standard Euclidean norm in \mathbb{R}^{n} and let $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ be another norm (that is a function satisfying the properties of Definition 9.91).

1. Expressing x in a basis and using the "abstract" properties that f must have, show that there is a constant $C_{1}>0$ such that

$$
f(x) \leq C_{1}|x| \text { for all } x \in \mathbb{R}^{n} .
$$

2. Show that f is continuous in \mathbb{R}^{n} (with respect to the standard distance of $\mathbb{R}^{n}!$).
3. Show that there is a number $c_{2}>0$ such that

$$
f(x) \geq c_{2} \text { for all }|x|=1
$$

4. Conclude that $f(x) \geq c_{2}|x|$ for all $x \in \mathbb{R}^{n}$.
5. Show that if \tilde{f} is yet another norm, then there is $C>0$ such that

$$
C^{-1} f(x) \leq \tilde{f}(x) \leq C f(x) \text { for all } x \in \mathbb{R}^{n} .
$$

4.6. Hilbert Schmidt norm of the composition. Take two linear functions $\phi: \mathbb{R}^{d} \rightarrow$ \mathbb{R}^{n} and $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and denote with Φ, Ψ the matrices that represent them in the canonical basis'. Recall that the linear map $\psi \circ \phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is represented in these basis' by the matrix $\Psi \cdot \Phi$. Show that

$$
\|\Psi \cdot \Phi\| \leq\|\Psi\|\|\Phi\|,
$$

where $\|\cdot\|$ is the Hilbert-Schmidt norm of a matrix (see 10.1.3 in the notes).
4.7. Mean value for vector-valued functions. Let $f \in C^{1}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ for $m>1$. Is it true that there is $t \in[0,1]$ such that

$$
f(1)-f(0)=D f_{t}(1)=\left[\begin{array}{c}
f_{1}^{\prime}(t) \\
\vdots \\
f_{m}^{\prime}(t)
\end{array}\right] ?
$$

Prove it or provide a counterexample.
4.8. A directional derivative vanish. Let $u \in C^{1}\left(\mathbb{R}^{n}\right)$ and $\nu \in \mathbb{R}^{n}$. Show that

1. If $\partial_{1} u \equiv 0$ then " u does not depend on x_{1} ", more rigorously: there exists a unique function $v \in C^{1}\left(\mathbb{R}^{n-1}\right)$ such that

$$
\begin{equation*}
u\left(x_{1}, \ldots, x_{n}\right)=v\left(x_{2}, \ldots, x_{n}\right) \text { for all } x \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

2. If $\partial_{\nu} u \equiv 0$ and $\nu \cdot e_{1} \neq 0$ then " u is a function of $n-1$ variables", more rigorously: there exists a unique function $w \in C^{1}\left(\mathbb{R}^{n-1}\right)$ such that

$$
u\left(x_{1}, \ldots, x_{n}\right)=w\left(x_{2}-\frac{x_{1} \nu_{2}}{\nu_{1}}, \ldots, x_{n}-\frac{x_{1} \nu_{n}}{\nu_{1}}\right) \text { for all } x \in \mathbb{R}^{n} .
$$

3. $\left(^{*}\right)$ What can we conclude if we assume only that $\partial_{1} u=0$ in an open connected subset $U \subset \mathbb{R}^{n}$?

Hints:

4.3.3 Use Cauchy-Schwartz and the fact that $a_{i}^{p-1} b_{i}=a_{i}^{p / 2} \cdot a_{i}^{(p-2) / 2} b_{i}$.
4.3.4 Show that $f^{\prime \prime}(t) \geq 0$, it is not the simplest derivative, but if you get it right the inequality in 4.2 .3 will be just what you need to prove that it $f^{\prime \prime} \geq 0$.
4.3.5 Write the convexity inequality between x, y and the middle point $(x+y) / 2$. To get the general case from the one with positive coordinates observe the following. For $x \in \mathbb{R}^{n}$ denote with $\hat{x}:=\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$, then

$$
|x+y|_{p} \leq|\hat{x}+\hat{y}|_{p}, \quad|\hat{x}|_{p}=|x|_{p}, \quad \text { for all } x, y \in \mathbb{R}^{n} .
$$

4.4.2 Combine the concavity of the $\log (\cdot)$ and the Cauchy-Schwarz inequality. You need to use the following little generalisation of the concavity inequality: for any concave function $f: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& f\left(\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}\right) \geq \lambda_{1} f\left(x_{1}\right)+\ldots+\lambda_{n} f\left(x_{n}\right) \\
& \qquad \text { for all } x_{i} \in \mathbb{R}, 0 \leq \lambda_{i} \leq 1 \text { with } \lambda_{1}+\ldots+\lambda_{n}=1 .
\end{aligned}
$$

4.4.3 It might be more convenient to work with $\log f(t)$, be careful with the computation, once again the inequality in 4.3 .2 will be just what you need to prove that $f^{\prime} \geq 0$.
4.5.2 Recall that from the definition it follows that $|f(x)-f(y)| \leq f(x-y) \ldots$ And that Lipschitz functions are always continuous.
4.5.3 Apply Weierstrass Theorem to f on $S:=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$ and use that f, being a norm, is nondegenerate.
4.5.5 If f is equivalent to $|\cdot|$ and \tilde{f} is equivalent to $|\cdot|$ it follows by transitivity that f is equivalent to $\tilde{f} \ldots$
4.6 First recall that $\|M\|^{2}$ is the sum of the squares of the entries of M. Notice that $(\Psi \cdot \Phi)_{j}^{i}\left(i\right.$ th row and j th column) is the scalar product of Ψ^{i} and Φ_{j} which are vectors of \mathbb{R}^{n}. Apply Cauchy-Schwartz to each of them.
4.7 Try $f(t)=(\sin (2 \pi t), \cos (2 \pi t)) \ldots$
4.8.2 Apply the mean value theorem to $u(x+t \nu) \ldots$
4.8.3 Consider the domain $U:=\left\{(x, y): x^{2}<y<x^{2}+1\right\}$ and the function

$$
u(x, y):= \begin{cases}\max \{0, y-2\}^{2} & \text { if } x \geq 0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

