Questions marked with (*) are a bit more complex, you might want to skip them at the first read. Hints available in the next page.

4.1. BONUS PROBLEM. Consider the function $u: (x, y) \mapsto x^{\sin(y)}$, defined for $(x, y) \in (0, \infty) \times \mathbb{R} \subset \mathbb{R}^2$. Compute $\partial_x u$ and $\partial_y u$.

4.2. Connected graphs. Let $U \subset \mathbb{R}^n$ be open and connected and let $f \in C^1(U, \mathbb{R}^m)$. Show that its graph

$$\Gamma_f := \{ (x, f(x)) : x \in U \}$$

is a connected subset of $\mathbb{R}^n \times \mathbb{R}^m$.

4.3. *p*-norms. For $p \ge 1$ and $x \in \mathbb{R}^n$ define the *p*-norm of *x* as

$$|x|_p := \Big(\sum_{i=1}^n |x_i|^p\Big)^{1/p}$$

- 1. For n = 2 and p = 1, 2, 10 sketch the sets $\{x \in \mathbb{R}^2 : |x|_p \le 1\}$.
- 2. For a given $x \in \mathbb{R}^n$, compute the limit $|x|_{\infty} := \lim_{p \to \infty} |x|_p$.
- 3. Using an appropriate inequality that you have seen in class, prove that

$$\left(\sum_{i=1}^{n} a_i^{p-1} b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^p\right) \left(\sum_{i=1}^{n} a_i^{p-2} b_i^2\right),$$

whenever a_i, b_i are *n*-tuples of positive numbers.

4. Fix $x, y \in \mathbb{R}^n$ and consider the function $f: [0, 1] \to \mathbb{R}$ defined as

$$f(t) := |tx + (1-t)y|_p = \left(\sum_{i=1}^n |tx_i + (1-t)y_i|^p\right)^{1/p}.$$
(1)

Show that f is convex. You may assume that the coordinates of x and y are all strictly positive and use the inequality of the previous point.

5. Deduce from the previous point that the triangular inequality holds, i.e.,

$$|x+y|_p \le |x|_p + |y|_p$$
 for all $x, y \in \mathbb{R}^n$.

- 6. What happens for $p \in (0, 1)$?
- **4.4.** *p*-means. For $x \in \mathbb{R}^n$ with positive coordinates and $p \neq 0$ define the *p*-mean as

$$\mu_p(x) := \left(\frac{x_1^p + \ldots + x_n^p}{n}\right)^{1/p}$$

1. Compute the limits $p \to \pm \infty, p \to 0$ and define accordingly

$$\mu_{-\infty}(x), \quad \mu_0(x), \quad \mu_{+\infty}(x).$$

2. For any *n*-tuple of numbers $a_i > 0$ show that

$$\sum_{i=1}^{n} \frac{a_i}{a_1 + \ldots + a_n} \log(a_i) \ge \log\left(\frac{a_1 \ldots + a_n}{n}\right).$$

- 3. For a fixed x, show that the function $f : \mathbb{R} \to \mathbb{R}$, given by $f(t) := \mu_t(x)$, is continuous and increasing.
- 4. Prove the Arithmetic-Geometric inequality and Arithmetic-Quadratic inequality:

$$n(x_1x_2\cdots x_n)^{1/n} \le x_1 + \ldots + x_n, \qquad (x_1 + \ldots + x_n)^2 \le n(x_1^2 + \ldots + x_n^2).$$

5. (*) Is f continuously differentiable in the whole \mathbb{R} ?

4.5. All norms are equivalent in \mathbb{R}^n . Let $|\cdot|$ denote the standard Euclidean norm in \mathbb{R}^n and let $f: \mathbb{R}^n \to [0, \infty)$ be another norm (that is a function satisfying the properties of Definition 9.91).

1. Expressing x in a basis and using the "abstract" properties that f must have, show that there is a constant $C_1 > 0$ such that

$$f(x) \leq C_1|x|$$
 for all $x \in \mathbb{R}^n$.

- 2. Show that f is continuous in \mathbb{R}^n (with respect to the standard distance of \mathbb{R}^n !).
- 3. Show that there is a number $c_2 > 0$ such that

$$f(x) \ge c_2$$
 for all $|x| = 1$.

- 4. Conclude that $f(x) \ge c_2 |x|$ for all $x \in \mathbb{R}^n$.
- 5. Show that if \tilde{f} is yet another norm, then there is C > 0 such that

$$C^{-1}f(x) \leq \tilde{f}(x) \leq Cf(x)$$
 for all $x \in \mathbb{R}^n$.

4.6. Hilbert Schmidt norm of the composition. Take two linear functions $\phi \colon \mathbb{R}^d \to \mathbb{R}^n$ and $\psi \colon \mathbb{R}^n \to \mathbb{R}^m$, and denote with Φ, Ψ the matrices that represent them in the canonical basis'. Recall that the linear map $\psi \circ \phi \colon \mathbb{R}^d \to \mathbb{R}^m$ is represented in these basis' by the matrix $\Psi \cdot \Phi$. Show that

$$\|\Psi \cdot \Phi\| \le \|\Psi\| \|\Phi\|,$$

where $\|\cdot\|$ is the Hilbert-Schmidt norm of a matrix (see 10.1.3 in the notes).

4.7. Mean value for vector-valued functions. Let $f \in C^1(\mathbb{R}, \mathbb{R}^m)$ for m > 1. Is it true that there is $t \in [0, 1]$ such that

$$f(1) - f(0) = Df_t(1) = \begin{bmatrix} f'_1(t) \\ \vdots \\ f'_m(t) \end{bmatrix}?$$

Prove it or provide a counterexample.

- **4.8.** A directional derivative vanish. Let $u \in C^1(\mathbb{R}^n)$ and $\nu \in \mathbb{R}^n$. Show that
 - 1. If $\partial_1 u \equiv 0$ then "*u* does not depend on x_1 ", more rigorously: there exists a unique function $v \in C^1(\mathbb{R}^{n-1})$ such that

$$u(x_1, \dots, x_n) = v(x_2, \dots, x_n) \text{ for all } x \in \mathbb{R}^n.$$
(2)

2. If $\partial_{\nu} u \equiv 0$ and $\nu \cdot e_1 \neq 0$ then "*u* is a function of n-1 variables", more rigorously: there exists a unique function $w \in C^1(\mathbb{R}^{n-1})$ such that

$$u(x_1,\ldots,x_n) = w(x_2 - \frac{x_1\nu_2}{\nu_1},\ldots,x_n - \frac{x_1\nu_n}{\nu_1})$$
 for all $x \in \mathbb{R}^n$.

3. (*) What can we conclude if we assume only that $\partial_1 u = 0$ in an open connected subset $U \subset \mathbb{R}^n$?

Hints:

- 4.3.3 Use Cauchy–Schwartz and the fact that $a_i^{p-1}b_i = a_i^{p/2} \cdot a_i^{(p-2)/2}b_i$.
- 4.3.4 Show that $f''(t) \ge 0$, it is not the simplest derivative, but if you get it right the inequality in 4.2.3 will be just what you need to prove that it $f'' \ge 0$.
- 4.3.5 Write the convexity inequality between x, y and the middle point (x + y)/2. To get the general case from the one with positive coordinates observe the following. For $x \in \mathbb{R}^n$ denote with $\hat{x} := (|x_1|, \ldots, |x_n|)$, then

$$|x+y|_p \le |\hat{x}+\hat{y}|_p, \quad |\hat{x}|_p = |x|_p, \quad \text{for all } x, y \in \mathbb{R}^n.$$

4.4.2 Combine the concavity of the $\log(\cdot)$ and the Cauchy–Schwarz inequality. You need to use the following little generalisation of the concavity inequality: for any concave function $f : \mathbb{R} \to \mathbb{R}$:

$$f(\lambda_1 x_1 + \ldots + \lambda_n x_n) \ge \lambda_1 f(x_1) + \ldots + \lambda_n f(x_n)$$

for all $x_i \in \mathbb{R}, 0 \le \lambda_i \le 1$ with $\lambda_1 + \ldots + \lambda_n = 1$.

- 4.4.3 It might be more convenient to work with $\log f(t)$, be careful with the computation, once again the inequality in 4.3.2 will be just what you need to prove that $f' \ge 0$.
- 4.5.2 Recall that from the definition it follows that $|f(x) f(y)| \le f(x y)$... And that Lipschitz functions are always continuous.
- 4.5.3 Apply Weierstrass Theorem to f on $S := \{x \in \mathbb{R}^n : |x| = 1\}$ and use that f, being a norm, is nondegenerate.
- 4.5.5 If f is equivalent to $|\cdot|$ and \tilde{f} is equivalent to $|\cdot|$ it follows by transitivity that f is equivalent to \tilde{f} ...
 - 4.6 First recall that $||M||^2$ is the sum of the squares of the entries of M. Notice that $(\Psi \cdot \Phi)_j^i$ (*i*th row and *j*th column) is the scalar product of Ψ^i and Φ_j which are vectors of \mathbb{R}^n . Apply Cauchy-Schwartz to each of them.
 - 4.7 Try $f(t) = (\sin(2\pi t), \cos(2\pi t))...$
- 4.8.2 Apply the mean value theorem to $u(x + t\nu)$...
- 4.8.3 Consider the domain $U := \{(x, y) : x^2 < y < x^2 + 1\}$ and the function

$$u(x,y) := \begin{cases} \max\{0, y-2\}^2 & \text{if } x \ge 0, \\ 0 & \text{if } x \le 0. \end{cases}$$