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Questions marked with (*) are a bit more complex, you might want to skip them at the
first read. Hints available in the next page.

4.1. BONUS PROBLEM. Consider the function u : (x, y) 7→ xsin(y), defined for
(x, y) ∈ (0,∞) × R ⊂ R2. Compute ∂xu and ∂yu.

4.2. Connected graphs. Let U ⊂ Rn be open and connected and let f ∈ C1(U,Rm).
Show that its graph

Γf := {(x, f(x)) : x ∈ U}
is a connected subset of Rn × Rm.

4.3. p–norms. For p ≥ 1 and x ∈ Rn define the p−norm of x as

|x|p :=
( n∑

i=1
|xi|p

)1/p
.

1. For n = 2 and p = 1, 2, 10 sketch the sets {x ∈ R2 : |x|p ≤ 1}.

2. For a given x ∈ Rn, compute the limit |x|∞ := limp→∞ |x|p.

3. Using an appropriate inequality that you have seen in class, prove that
( n∑

i=1
ap−1

i bi

)2
≤

( n∑
i=1

ap
i

)( n∑
i=1

ap−2
i b2

i

)
,

whenever ai, bi are n-tuples of positive numbers.

4. Fix x, y ∈ Rn and consider the function f : [0, 1] → R defined as

f(t) := |tx+ (1 − t)y|p =
( n∑

i=1
|txi + (1 − t)yi|p

)1/p
. (1)

Show that f is convex. You may assume that the coordinates of x and y are all
strictly positive and use the inequality of the previous point.

5. Deduce from the previous point that the triangular inequality holds, i.e.,

|x+ y|p ≤ |x|p + |y|p for all x, y ∈ Rn.

6. What happens for p ∈ (0, 1)?

4.4. p–means. For x ∈ Rn with positive coordinates and p ̸= 0 define the p-mean as

µp(x) :=
(
xp

1 + . . .+ xp
n

n

)1/p

.

1. Compute the limits p → ±∞, p → 0 and define accordingly

µ−∞(x), µ0(x), µ+∞(x).
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2. For any n-tuple of numbers ai > 0 show that
n∑

i=1

ai log(ai)
a1 + . . .+ an

≥ log
(a1 . . .+ an

n

)
.

3. For a fixed x, show that the function f : R → R, given by f(t) := µt(x), is continuous
and increasing.

4. Prove the Arithmetic-Geometric inequality and Arithmetic-Quadratic inequality:

n(x1x2 · · ·xn)1/n ≤ x1 + . . .+ xn, (x1 + . . .+ xn)2 ≤ n(x2
1 + . . .+ x2

n).

5. (*) Is f continuously differentiable in the whole R?

4.5. All norms are equivalent in Rn. Let | · | denote the standard Euclidean norm in
Rn and let f : Rn → [0,∞) be another norm (that is a function satisfying the properties
of Definition 9.91).

1. Expressing x in a basis and using the “abstract” properties that f must have, show
that there is a constant C1 > 0 such that

f(x) ≤ C1|x| for all x ∈ Rn.

2. Show that f is continuous in Rn (with respect to the standard distance of Rn!).

3. Show that there is a number c2 > 0 such that

f(x) ≥ c2 for all |x| = 1.

4. Conclude that f(x) ≥ c2|x| for all x ∈ Rn.

5. Show that if f̃ is yet another norm, then there is C > 0 such that

C−1f(x) ≤ f̃(x) ≤ Cf(x) for all x ∈ Rn.

4.6. Hilbert Schmidt norm of the composition. Take two linear functions ϕ : Rd →
Rn and ψ : Rn → Rm, and denote with Φ,Ψ the matrices that represent them in the
canonical basis’. Recall that the linear map ψ ◦ ϕ : Rd → Rm is represented in these basis’
by the matrix Ψ · Φ. Show that

∥Ψ · Φ∥ ≤ ∥Ψ∥∥Φ∥,

where ∥ · ∥ is the Hilbert-Schmidt norm of a matrix (see 10.1.3 in the notes).
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4.7. Mean value for vector-valued functions. Let f ∈ C1(R,Rm) for m > 1. Is it
true that there is t ∈ [0, 1] such that

f(1) − f(0) = Dft(1) =


f ′

1(t)
...

f ′
m(t)

?

Prove it or provide a counterexample.

4.8. A directional derivative vanish. Let u ∈ C1(Rn) and ν ∈ Rn. Show that

1. If ∂1u ≡ 0 then “u does not depend on x1”, more rigorously: there exists a unique
function v ∈ C1(Rn−1) such that

u(x1, . . . , xn) = v(x2, . . . , xn) for all x ∈ Rn. (2)

2. If ∂νu ≡ 0 and ν · e1 ̸= 0 then “u is a function of n− 1 variables”, more rigorously:
there exists a unique function w ∈ C1(Rn−1) such that

u(x1, . . . , xn) = w(x2 − x1ν2
ν1
, . . . , xn − x1νn

ν1
) for all x ∈ Rn.

3. (*) What can we conclude if we assume only that ∂1u = 0 in an open connected
subset U ⊂ Rn?
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Hints:

4.3.3 Use Cauchy–Schwartz and the fact that ap−1
i bi = a

p/2
i · a(p−2)/2

i bi.

4.3.4 Show that f ′′(t) ≥ 0, it is not the simplest derivative, but if you get it right the
inequality in 4.2.3 will be just what you need to prove that it f ′′ ≥ 0.

4.3.5 Write the convexity inequality between x, y and the middle point (x+ y)/2. To get
the general case from the one with positive coordinates observe the following. For
x ∈ Rn denote with x̂ := (|x1|, . . . , |xn|), then

|x+ y|p ≤ |x̂+ ŷ|p, |x̂|p = |x|p, for all x, y ∈ Rn.

4.4.2 Combine the concavity of the log(·) and the Cauchy–Schwarz inequality. You need
to use the following little generalisation of the concavity inequality: for any concave
function f : R → R:

f(λ1x1 + . . .+ λnxn) ≥ λ1f(x1) + . . .+ λnf(xn)
for all xi ∈ R, 0 ≤ λi ≤ 1 with λ1 + . . .+ λn = 1.

4.4.3 It might be more convenient to work with log f(t), be careful with the computation,
once again the inequality in 4.3.2 will be just what you need to prove that f ′ ≥ 0.

4.5.2 Recall that from the definition it follows that |f(x) − f(y)| ≤ f(x− y)... And that
Lipschitz functions are always continuous.

4.5.3 Apply Weierstrass Theorem to f on S := {x ∈ Rn : |x| = 1} and use that f, being a
norm, is nondegenerate.

4.5.5 If f is equivalent to | · | and f̃ is equivalent to | · | it follows by transitivity that f is
equivalent to f̃ ...

4.6 First recall that ∥M∥2 is the sum of the squares of the entries of M . Notice that
(Ψ · Φ)i

j (ith row and jth column) is the scalar product of Ψi and Φj which are
vectors of Rn. Apply Cauchy-Schwartz to each of them.

4.7 Try f(t) = (sin(2πt), cos(2πt))...

4.8.2 Apply the mean value theorem to u(x+ tν)...

4.8.3 Consider the domain U := {(x, y) : x2 < y < x2 + 1} and the function

u(x, y) :=

max{0, y − 2}2 if x ≥ 0,
0 if x ≤ 0.
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4. Solutions

Solution of 4.1: ∂xu = sin(y)xsin(y)−1 and ∂yu = log(x) cos(y)xsin(y).

Solution of 4.2: We claim that Γf is in fact path connected. Let (x0, f(x0)) and (x1, f(x1)
be two points in Γf . Since U ⊂ Rn is open and connected it is path connected, so there is
γ : [0, 1] → U such that γ(0) = x0, γ(1) = x1. Then the path

[0, 1] ∋ t 7→ (γ(t), f(γ(t))

connects (x0, f(x0)) with (x1, f(x1)).

Solution of 4.3:

1.

2. |x|∞ = max{|x1|, . . . , |xn|}, let’s prove it. Assume that |x1| ≥ |xj| for all j’s, then

|x1| ≤ |x|p = |x1|
(
1 + |xn|p

|x1|p + . . .+ |xn|p
|x1|p

)1/p
≤ |x1|(1 + 1 + . . .+ 1)1/p = |x1|n1/p,

and |x1|n1/p → |x1| as p → ∞.

3. This is Cauchy-Schwarz inequality in disguise:
( n∑

i=1
ap−1

i bi

)2
=

( n∑
i=1

a
p
2 −1
i bi︸ ︷︷ ︸
=:xi

a
p
2
i︸︷︷︸

=:yi

)2
≤

( n∑
i=1

y2
i

)( n∑
i=1

x2
i

)
=

( n∑
i=1

ap
i

)( n∑
i=1

ap−2
i b2

i

)
,

notice that we did not use p ≥ 1, any p ∈ R would have worked.

4. We compute

f ′(t) = 1
p
f(t)1−p d

dt

( n∑
i=1

|txi + (1 − t)yi|p
)

= f(t)1−p
n∑

i=1
|txi + (1 − t)yi|p−1(xi − yi),

and then

f ′′(t) = (1 − p)f(t)−pf ′(t)
n∑

i=1
|txi + (1 − t)yi|p−1(xi − yi)

+ (p− 1)f(t)1−p
n∑

i=1
|txi + (1 − t)yi|p−2(xi − yi)2,

so f ′′ ≥ 0 if and only if

f ′(t)
f(t)1−p

n∑
i=1

|txi + (1 − t)yi|p−1(xi − yi) ≤ f(t)p
n∑

i=1
|txi + (1 − t)yi|p−2(xi − yi)2

which setting ai := |txi + (1 − t)yi|, bi := xi − yi, and substituting f, f ′ becomes
( n∑

i=1
ap−1

i bi

)2
≤

( n∑
i=1

ap
i

)( n∑
i=1

ap−2
i b2

i

)
,
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which we proved at the previous point. Notice that we proved that

f ′′(t) = (p− 1) × {something ≥ 0}

so we proved that if p < 1 then f is concave.

5. If the coordinates of x, y are non-negative we use the convexity inequality on f and
get ∣∣∣x+ y

2
∣∣∣
p

= f(1/2) ≤ f(0) + f(1)
2 = |x|p + |y|p

2 ,

simplifying the factors 2 we get the triangle inequality.

In the general case we use the trick in the hint and find

|x+ y|p ≤ |x̂+ ŷ|p ≤ |x̂|p + |ŷ|p = |x|p + |y|p.

6. Since f is concave for p < 1, one has the converse inequality:

|x+ y|p ≥ |x|p + |y|p.

Solution of 4.4:

1. This is similar to 4.3.2: µ+∞(x) = max{x1, . . . , xn}, let’s prove it. Assume that
x1 ≥ xj for all j’s, then

x1 ≥ µp(x) = x1
(
1 + xp

n

xp
1

+ . . .+ xp
n

xp
1

)1/p
n−1/p ≥ x1n

−1/p,

and n−1/p → 1 as p → ∞.

Noticing that 1/µp(x) = µ−p(1/x) we find

µ−∞(x) = lim
p→−∞

µp(x) = lim
q→+∞

(µ−q(1/x))−1 =
(

max
i

1/xi

)−1
=

( 1
mini xi

)−1
= min

i
xi.

Finally µ0(x) = (x1 · · ·xn)1/n. Recall

yt = et log y = 1 + t log(y) +O(t2) as t → 0, with y > 0 fixed.

Thus taking a log we find

log µp(x) = 1
p

log x
p
1 + . . .+ xp

n

n
= 1
p

log
(1 + log(x1)p+ . . .+ 1 + log(xn)p+O(p2)

n

)
= 1
p

log
(

1 + p

n
{log(x1) + . . .+ log(xn)} +O(p2)

)
= 1
p

log
(

1 + p

n
log(x1 · · ·xn) +O(p2)

)
= 1
n

log(x1 · · ·xn) +O(p).
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2. Using the convexity inequality of the hint with the convex function x 7→ x log(x)
and

xi := ai, λi := 1
n
, for all i = 1, . . . , n,

we find that

1
n

n∑
i=1

ai log(ai) ≥ a1 + . . .+ an

n
log

(
a1 + . . .+ an

n

)
,

which is what we wanted up to reshuffling the terms.

3. f(t) is continuous at all t ≠ 0, since it is given by an analytic formula. At t = 0
we showed that the (bilateral) limit limt→0 f(t) = limt→0 µt(x) = µ0(x) = f(0)
exists finite, so by Analysis I, f(t) is continuous on the whole R. Computing the
logarithmic derivative

(log f(t))′ = d

dt

1
t
{log(xt

1 + . . .+ xt
n) − log(n)}

= − 1
t2

log
(xt

1 + . . .+ xt
n

n

)
+ 1
t

d
dt

(xt
1 + . . .+ xt

n)
(xt

1 + . . .+ xt
n)

= − 1
t2

log
(xt

1 + . . .+ xt
n

n

)
+ 1
t2

log(xt
1)xt

1 + . . .+ log(xt
n)xt

n

(xt
1 + . . .+ xt

n) ,

which is nonnegative by the inequality of the previous point with ai = xt
i. This

computation is rigorous at least for t ̸= 0, and shows that f(t) is increasing in
(−∞, 0) ∪ (0,+∞), thus (being continuous) it is increasing on the whole R.

4. The AM-GM inequality is equivalent to f(0) ≤ f(1) while the AM −QM inequality
is equivalent to f(1) ≤ f(2). Since we proved that f is increasing both are true.

5. In order to understand if f is of class C1 we have to understand whether f ′ extends
continuously at t = 0. Since (log f)′ = f ′/f and f(0) > 0 it is the same to show that
(log f)′ extends continuously at t = 0 so we pick the previous formula and expand

(log f(t))′ = 1
t2

{ log(xt
1)xt

1 + . . .+ log(xt
n)xt

n

(xt
1 + . . .+ xt

n) − log
(xt

1 + . . .+ xt
n

n

)}

= 1
t2

{ ∑n
i=1 log(xt

i) + log(xt
i)2 +O(t3)∑n

i=1 1 + log(xt
i) + log(xt

i)2 +O(t3) − log
(
1 +

n∑
i=1

1
n

log(xt
i) + 1

n
log(xt

i)2 +O(t3)
)}

where we used that for fixed z > 0 it holds, as t → 0,

log(zt)yt = t log(z) + t2 log(z)2 +O(t3), zt = 1 + t log(z) + t2 log(z)2 +O(t3).
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Now we short the notation to yi := log(xi) and compute everything

(log f(t))′ = 1
t2

{ ∑n
i=1 tyi + t2y2

i +O(t3)∑n
i=1 1 + tyi + t2y2

i +O(t3) − log
(
1 +

n∑
i=1

t
n
yi + t2

n
y2

i +O(t3)
)}

= 1
t2

{( n∑
i=1

tyi + t2y2
i +O(t3)

)(
1
n

− 1
n2

n∑
i=1

tyi +O(t2)
)

−
n∑

i=1
( t

n
yi + t2

n
y2

i ) + 1
2

( n∑
i=1

t
n
yi

)2
+O(t3)

}

= 1
t2

{ n∑
i=1

( t
n
yi + t2

n
y2

i ) −
( n∑

i=1

t
n
yi

)2
−

n∑
i=1

( t
n
yi + t2

n
y2

i ) + 1
2

( n∑
i=1

t
n
yi

)2
+O(t3)

}

= −1
2

(
1
n

n∑
i=1

yi

)2
+O(t),

where we used the expansions
1

n+ t
= 1
n

− t

n2 +O(t2), log(1 + t) = t− t2

2 +O(t3).

Thus substituting back the yi’s we proved

−2f ′(t) = f(t)
{
(log f(0))2 +O(t)

}
as t → 0,

which proves that f is continuously differentiable also at t = 0.

Solution of 4.5: See Theorem 9.107 in the notes.

Solution of 4.6: For i ∈ {1, . . . ,m} we denote with Ψi the vector (Ψi
ℓ)1≤ℓ≤n in Rn. For

j ∈ {1, . . . , d} we denote with Φj the vector (Φℓ
j)1≤ℓ≤n in Rn. Notice that by definition of

matrix multiplication
(Ψ · Φ)i

j = Ψi · Φj.

Now, by Cauchy-Schwarz inequality in Rn we have

∥Ψ · Φ∥2 =
m∑

i=1

d∑
j=1

|Ψi · Φj|2 ≤
m∑

i=1

d∑
j=1

|Ψi|2 |Φj|2 =
( m∑

i=1
|Ψi|2

)( d∑
j=1

|Φj|2
)

= ∥Ψ∥2∥Φ∥2.

Solution of 4.7: It is false. If f(t) = (sin(2πt), cos(2πt)) then f(1) − f(0) = 0 ∈ Rm,
but |f ′(t)| = 2π|(cos(2πt),− sin(2πt))| = 2π ̸= 0.

Solution of 4.8:

1. Set v(x2, . . . , xn) := u(0, x2, . . . , xn) for all (x2, . . . , xn) ∈ Rn−1. By definition of
directional derivative, for each fixed (x2, . . . , xn) ∈ Rn−1, we have that

d

dt

(
u(t, x2, . . . , xn) − v(x2, . . . , xn)

)
= ∂1u(t, x2, . . . , xn) = 0,

thus t 7→ u(t, x2, . . . , xn) − v(x2, . . . , xn) is constant. Since it vanishes at t = 0 it is
constantly zero, proving what we wanted.

assignment: March 11, 2023 due: March 18, 2023 8/9



d-math
Federico Franceschini

Analysis II: Several Variables
Problem set 4

ETH Zürich
FS 2024

2. Following the same reasoning: consider the difference u(x) − u(x+ tν), freeze the x
and prove that t derivative with respect to t is zero. We find that u(x) = u(x+ tν)
for all x ∈ Rn and t ∈ R. Now, choosing −t := x1/ν1, we make the first coordinate
vanish and find the sought formula.

3. Consider the function u and the domain U of the hint. We compute the partial
derivatives:

∂1u = 0, ∂2u = 2 max{0, y − 2},

which are manifestly continuous, so — by the sufficient condition seen in class —
we have u ∈ C1(U). On the other hand u cannot be written as a function of y only
since 2.52 = u(2, 4.5) ̸= u(−2, 4.5) = 0.

The representation formula (2) holds if U has a special structure, namely it is
“convex in the x1-direction” that is

x, y ∈ U, x− y ∈ Re1, t ∈ [0, 1] ⇒ tx+ (1 − t)y ∈ U.

Geometrically this means that if we slice U with the plane {x1 = c} then we can
connect any point in U with this plane following a path aligned with e1.
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