Problems marked with a $\left(^{*}\right)$ are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems/subquestions marked with (\bigcirc).
6.1. BONUS PROBLEM. Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ be a convex function.
(a) Show that $z \in \mathbb{R}^{n}$ is a critical point of f if and only if z is a global minimizer.
(b) Provide an example of such an f in some \mathbb{R}^{n} with $n>1$, which is always nonnegative, but does not have a minimum point. That is to say

$$
f(x)>\inf _{\mathbb{R}^{n}} f \geq 0 \text { for all } x \in \mathbb{R}^{n} .
$$

You can use all the Theorems seen in class.
6.2. The signature of a 2×2 matrix. Despite the definition, it is not necessary to compute the eigenvalues of a matrix to find its signature ${ }^{1}$. Prove that for a 2×2 matrix M we have the following simple rule to determine the signature in terms of the $\operatorname{det} M$ and $\operatorname{Tr} M$:

- If $\operatorname{det} M>0, \operatorname{Tr} M>0$ then M is positive definite,
- If $\operatorname{det} M>0, \operatorname{Tr} M<0$ then M is negative definite,
- If $\operatorname{det} M<0$ then M is indefinite,
- If $\operatorname{det} M=0$, then M is degenerate.
6.3. Isoperimetric triangles. Among all the triangles with perimeter equal to 2, find the ones with the largest area. You may give for granted Heron's formula, which gives the area of a triangle in terms of the length of its sizes x, y, z :

$$
A=\sqrt{p(p-x)(p-y)(p-z)}, \quad \text { with } 2 p:=x+y+z
$$

so that in our case $p=1$.
6.4. Barycenter (Ω). Let $y_{1}, \ldots, y_{k} \in \mathbb{R}^{n}$ be given. Show that there is exactly one point for which

$$
f(x)=\left\|x-y_{1}\right\|^{2}+\cdots+\left\|x-y_{k}\right\|^{2}, \quad x \in \mathbb{R}^{n}
$$

is minimal and determine this point.
6.5. Linear regression I (ऽ). You study the house market in Zürich over a year in which N houses are sold. You keep track of the size of the houses x_{1}, \ldots, x_{N} and the respective sale prices y_{1}, \ldots, y_{N}. Now you would like would like to find "the" function $f: \mathbb{R} \rightarrow \mathbb{R}$ that gives

$$
\text { sale price }=f \text { (size of the house) },
$$

[^0]and you make the (not unreasonable) assumption that f is affine, i.e., $f_{a, b}(x)=a x+b$ for some coefficients $a, b \in \mathbb{R}$. Among all such functions find (in terms of the data you collected) the value of the parameters a, b that minimizes the average quadratic error
$$
E(a, b):=\sum_{i=1}^{N}\left(y_{i}-f_{a, b}\left(x_{i}\right)\right)^{2}, \quad a, b \in \mathbb{R}
$$
6.6. Convex functions (\triangle). Decide whether the following functions f_{i} are convex in the convex domain $U_{i} \subset \mathbb{R}^{n}$. Try to find, in each case, the simplest argument, you can almost always avoid lengthy computations.

1. $f_{1}(x, y)=x^{2}+y^{2}-4 y$ defined in $U_{1}=\mathbb{R}^{2}$
2. $f_{2}(x, y)=x^{2}+y^{2}-y^{4}$ defined in $U_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<\frac{1}{10000}\right\}$
3. $f_{3}(x, y)=x^{2}+y^{2}-4 x y$ defined in $U_{3}=\mathbb{R}^{2}$
4. $f_{4}(x, y)=x^{2}+y^{2}-4 x y$ defined in $U_{4}=\left\{(x, y) \in \mathbb{R}^{2}: 0<10 x<|y|\right\}$
5. $f_{5}(x)=\phi(g(x)), x \in U_{5}$ where $g \in C^{2}\left(U_{5}\right)$ is any convex function in $U_{5} \subset \mathbb{R}^{n}$ and $\phi \in C^{2}(\mathbb{R})$ is any convex and increasing function.
6. $f_{6}(x, y)=\left(1+x^{2}+y^{2}\right)^{1 / 2}$ defined in $U_{6}=\mathbb{R}^{2}$
7. $f_{7}(x, y)=-\left(1+x^{2}+y^{2}\right)^{-1 / 2}$ defined in $U_{7}=\mathbb{R}^{2}$
8. $f_{8}(x)=\sum_{i=1}^{n}\left|x_{i}\right|^{p}$ in $U_{8}=\mathbb{R}^{n}$, where $p \geq 1$ is some fixed exponent.
9. $f_{9}(x)=\max \{\phi(x), \psi(x)\}$ where $\phi, \psi \in C\left(U_{9}\right)$ are any pair of convex functions defined in some open set $U_{6} \subset \mathbb{R}^{n}$.
10. $f_{10}(x)=|x|$ defined in $U_{10}=\mathbb{R}^{n}$.
11. $f_{11}(x)=\phi(|x|)$ in $U_{11}=B_{1} \subset \mathbb{R}^{n}$, where $\phi \in C(\mathbb{R})$ is any convex function.
6.7. Multiple choice. Among the following statements about convex functions mark those (and only those) which are always true.
(a) If $f \in C^{1}(U)$ is convex in some open convex set $U \subset \mathbb{R}^{n}$ and f has a local maximum at $z \in U$, then $\nabla f \equiv 0$ in U.
(b) If $f \in C^{1}(U)$ is convex in some open convex set $U \subset \mathbb{R}^{n}$ and f has a global maximum at $z \in U$, then $\nabla f \equiv 0$ in U.
(c) Assume $f_{n} \in C^{2}(\mathbb{R})$ is a sequence of convex functions that converge pointwise to some $f: \mathbb{R} \rightarrow \mathbb{R}$. Is f necessarily convex?
(d) There exists a convex function $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
f(x)=1-2 x_{1}+x_{2}^{3}+O\left(|x|^{4}\right) \text { as }|x| \rightarrow 0 .
$$

(e) There exists a convex function $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
f(x)=1-2 x_{1}+x_{2}^{4}+O\left(|x|^{4}\right) \text { as }|x| \rightarrow 0 .
$$

(f) A convex set is not necessarily connected.
6.8. Multiple choice. The Hessian matrix of $f \in C^{2}\left(\mathbb{R}^{n}\right)$ is positive semidefinite at a critical point x_{0} of f, i.e.,

$$
\left\langle v, H f\left(x_{0}\right) v\right\rangle \geq 0 \text { for all } v \in \mathbb{R}^{n} .
$$

Which of the following statements necessarily hold? (There may be more than one).
(a) x_{0} is a strict local minimum of f.
(b) x_{0} is a local minimum of f.
(c) x_{0} is not a local maximum of f.
(d) None of the above statements.
6.9. Minimization. The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $f(x, y)=2 x^{2}+y^{2}-x$. Determine the extrema of f on...
(a) \ldots the unit circle $\mathbb{S}^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$;
(b) . . . the closed unit disk $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.
6.10. Lagrange Multipliers (() . Consider the function $f(x, y, z)=3 x-y+2 z$ and the set

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, x+y=0\right\}
$$

Determine the extrema of f on M and their nature.
6.11. Critical Points. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $f(x, y)=\left(a x^{2}+b y^{2}\right) e^{-x^{2}-y^{2}}$ with real parameters $a, b \in \mathbb{R}$. Find all critical points and determine their nature with the Hessian test, depending on a, b.

Hints:

6.2 Use the spectral Theorem and the properties:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \quad \operatorname{Tr}(A B)=\operatorname{Tr}(B A) .
$$

6.3 Minimize A^{2} instead of A. You can use the method of Lagrange multipliers.
6.5 Do not get distracted by the setting, you after all you have to minimize a quadratic polynomial of $a, b \ldots$.

[^0]: ${ }^{1}$ Ask ChatGPT about the Principal Minor Theorem

