D-MATH Analysis II: Several Variables ETH Ziirich
Federico Franceschini Problem set 6 FS 2024

Problems marked with a (*) are a bit more complex and can be skipped at a first read.

If you don’t have a lot of time focus on the Problems/subquestions marked with (Q).

6.1. BONUS PROBLEM. Let f € C?(R") be a convex function.
(a) Show that z € R™ is a critical point of f if and only if z is a global minimizer.

(b) Provide an example of such an f in some R" with n > 1, which is always nonnegative,
but does not have a minimum point. That is to say

f(x) > ilélnff >0 for all x € R™.

You can use all the Theorems seen in class.

6.2. The signature of a 2 X 2 matrix. Despite the definition, it is not necessary to
compute the eigenvalues of a matrix to find its signature!. Prove that for a 2 x 2 matrix
M we have the following simple rule to determine the signature in terms of the det M
and TrM:

o Ifdet M >0, TrM > 0 then M is positive definite,
o Ifdet M > 0, TrM < 0 then M is negative definite,
o If det M < 0 then M is indefinite,

o If det M =0, then M is degenerate.

6.3. Isoperimetric triangles. Among all the triangles with perimeter equal to 2, find
the ones with the largest area. You may give for granted Heron’s formula, which gives the
area of a triangle in terms of the length of its sizes z,y, z:

A=\/plp—2)(p—y)p - 2), with 2p ==z +y + z,

so that in our case p = 1.

6.4. Barycenter (). Let y;,...,yx € R" be given. Show that there is exactly one
point for which
f@)=llz—wnlP+- +llz —wl?* zeR"

is minimal and determine this point.

6.5. Linear regression I (Q). You study the house market in Ziirich over a year in
which N houses are sold. You keep track of the size of the houses x1,...,xy and the
respective sale prices y,...,yny. Now you would like would like to find “the” function
f: R — R that gives

sale price = f(size of the house),

!Ask ChatGPT about the Principal Minor Theorem

assignment: March 25, 2023 due: Apr 8, 2023 1/12



D-MATH Analysis II: Several Variables ETH Ziirich
Federico Franceschini Problem set 6 FS 2024

and you make the (not unreasonable) assumption that f is affine, i.e., fop(x) = ax + b
for some coefficients a,b € R. Among all such functions find (in terms of the data you
collected) the value of the parameters a, b that minimizes the average quadratic error

N

E(a,b) := Z(yz - fa,b(xi»Q, a,b € R.

i=1

6.6. Convex functions (). Decide whether the following functions f; are convex in
the convex domain U; C R™. Try to find, in each case, the simplest argument, you can
almost always avoid lengthy computations.

1. fi(z,y) = 2* + y* — 4y defined in U; = R?

2. folw,y) = 2® +y* — y* defined in Uy = {(z,y) € R* : 22 + 1 < 5o

3. fz(z,y) = 2* + y* — 4zy defined in Uz = R?

4. fi(z,y) = 2?2 + y* — 4wy defined in Uy = {(z,y) € R? : 0 < 10z < |y|}

5. fs(z) = ¢(g(x)),z € Us where g € C?(Us) is any convex function in Us C R" and

)
¢ € C*(R) is any convex and increasing function.

6. fo(x,y) = (1+ 2%+ y?)"/2 defined in Us = R?

7. frlx,y) = —(1 4+ 2% + y?)~/2 defined in U; = R?

8. fs(z) =X |z;P in Ug = R™, where p > 1 is some fixed exponent.

9. fo(x) = max{o(z),¥(x)} where ¢,9 € C(Uy) are any pair of convex functions

defined in some open set Ug C R™.
10. fio(z) = |z| defined in U;g = R™
11. f11(z) = ¢(|z]) in Uy; = By C R™, where ¢ € C(R) is any convex function.

6.7. Multiple choice. Among the following statements about convex functions mark
those (and only those) which are always true.

(a) If f € CY(U) is convex in some open convex set U C R"™ and f has a local maximum
at z€ U, then Vf=0in U.

(b) If f € C*(U) is convex in some open convex set U C R™ and f has a global maximum
at ze U,then Vf=0in U.

(c) Assume f, € C*(R) is a sequence of convex functions that converge pointwise to
some f: R — R. Is f necessarily convex?

(d) There exists a convex function f € C*(R?) such that

f(z) =1-22; + 25 + O(|z|*") as |z| — 0.
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(e) There exists a convex function f € C*(R?) such that

f(x) =1—2x; + 25+ O(|z|*) as |z| — 0.
(f) A convex set is not necessarily connected.

6.8. Multiple choice. The Hessian matrix of f € C?(R") is positive semidefinite at a
critical point z( of f, i.e.,

(v, H f(xg)vy > 0 for all v € R™.

Which of the following statements necessarily hold? (There may be more than one).
(a) xo is a strict local minimum of f.
(b) xo is a local minimum of f.
(c) z is not a local maximum of f.
)

(d) None of the above statements.

6.9. Minimization. The function f: R?> — R is given by f(x,y) = 22% + ¢y — z.
Determine the extrema of f on...

(a) ...the unit circle S' = {(z,y) € R*|2* + y* = 1};
(b) ...the closed unit disk D = {(x,y) € R?*|2* +y* < 1}.

6.10. Lagrange Multipliers (©). Consider the function f(x,y,z) = 3z —y + 2z and
the set
M ={(z,y,2) e R*|2* +y* + 2 = 1,2 +y = 0}.

Determine the extrema of f on M and their nature.

6.11. Critical Points. Let f : R2 — R be the function f(z,y) = (az? + by?)e "
with real parameters a,b € R. Find all critical points and determine their nature with the
Hessian test, depending on a, b.
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Hints:

6.2 Use the spectral Theorem and the properties:
det(AB) = det(A)det(B), Tr(AB) = Tr(BA).
6.3 Minimize A? instead of A. You can use the method of Lagrange multipliers.

6.5 Do not get distracted by the setting, you after all you have to minimize a quadratic
polynomial of a,b....
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6. Solutions

Solution of 6.1:

(a) If z € R™ is a global minimum point then V f(z) = 0 by Proposition 11.4. If V f(z)
then by Proposition 11.24 it holds

) = f(z) +Vf(z) - (y — 2) = f(z) for all y € R",
which means — by definition — that z is a global minimizer.

(b) f(z) := e"**2 works. Clearly f(z) > 0 for all z € R?, and lim; ,, f(—t,—t) =
limy_,o0 72t = 0, so infg2 f = 0. Furthermore f is convex since for all unit vectors v
we have

O f(x) = ™2 (vy + vy),

and
&wf(;l:) = €x1+x2(U1 + U2)2 Z 0.

Solution of 6.2: By the Spectral Theorem there is O € R**? such that

A1 O

T _
OMO" = lo Ay

1 , OO" =1 (in particular det O = £1),

with A, Ay € R. Thus we can see the (perhaps well-known) fact that
det M = det(OMOT) = Ay, TrM = Tr(MOTO) = Tr(OMOT) = Ay + .
It is immediate now to check that
o Ay > 0, M+ >0 1mplles that A\; > 0 and Ay > 0.
o Ay > 0,A + Ay < 0 implies that A\; < 0 and Ay < 0.
e Ay < 0 implies that one of the \; is positive and the other negative.

e A2 = 0 implies that one of them is zero.

Solution of 6.3: The set open of possible (z,y, z) that represent sides of a triangle is
given by

U:={(z,9,2) €ER*:2>0,y>0,2>0,0+y>z2,y+2>x,2+1>y}

We seek to minimize the area, which is the same as minimizing the its square, which by
Heron’s formula is given by

f(x,y,z):Azz(1—:1:)(1—3/)(1—2), (l’,y,Z)EU

subject to the constraint z 4+ y + z = 2. By Weierstrass Theorem [ admits a maximum
point (xg, Yo, 20) € U N{z +y+ 2z = 2}.
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Case 1: (xg, Yo, 20) lies on OU. Notice that any point in the closure U needs to satisfy
U:={(2,9,2) €R*:2>0,y>0,2>0,2+y>z,y+2>2,2+1 >y}

as can be seen taking a converging sequence of elements of U. Thus, an element on the
boundary OU = U \ U, must satisfy at least one among the following (otherwise it would
lie in the interior)

r=0, y=0, 2=0, z4+y=2 y+z=2x, z+x=1.

In all these cases we have that our triangle degenerates into a segment (one of the sides
is zero!) and so f must vanish at these points, which must be minimum points. Let us
check this:

o If (say) x =0, then y > z and z > y, so z = y. Since the perimeter is 2 we find
= 2z = 1, which leads to f(0,1,1) = 0. The other cases are symmetric.

o If (say) x +y = z, then 2 — 2z = z, thus z = 1 and so f(z,y,1) = 0. The other cases
are symmetric.

We conclude that the “battle for the maximum?” is fought in the interior of U.

Case 2: (o, Yo, 20) lies in the interior of U. The method of Lagrange multipliers
applies with ¢g(z,y,2) :=x 4+ y + 2z — 1 and, since Vg is never zero, gives the system

L=yl —2z)=A,
(1=2z)(1—z)=A
(I-2)(1-y)=A
r+y+z=2,

(x,y,2) e U X € R.

We solve this system. First we claim that no one among x, y, 2z can be equal to one. For
example assume z = 1, then necessarily A = 0 and then also (1 —z)(1—y) =0sox =1 or
y = 1. Since z + y + z = 2 we find that one among z,y is zero, contradicting (z,y, z) € U.

Now proceed taking the difference of the first two equation, finding

0=01=2)(z~-y),

which, since z # 1, leads to z = y. If we take now the difference between the second two
equations we find

(1—z)(y—2) =0,

and, since x # 1, we find y = z. Thus the only solution of this system needs to satisfy

r=y=z,v+y+z=2=rx=y=2=

Y

[S1] )

since we assumed (g, Yo, 20) € U we know that it solves the system, hence
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which corresponds to the equilateral triangle.

Solution of 6.4: We start observing that f is a sum of convex functions hence it is
convex. Furthermore f is smooth (it is a polynomial). Since f is convex, a point is a
global minimizer if and only if it is a critical point. We prove that there is a unique critical
point, proving simultaneously that there exist a minimum point, and that it is unique.

We obtain for the partial derivatives of f

Oy, f(x) = 22 (zj — (¥i);) -

For x to be a critical point, 9, f(x) = 0 for all j, hence x; = % % (i);. Direct calculation

yields
02,0, f () = 2kdy,

thus H is diagonal with entries 2k for all x € R”. We obtain that H is positive definite,
hence at the critical point, there is a minimum, and the point defining the minimum is
uniquely determined by the equality z; = %Zle(yi) j-

Solution of 6.5: We are asked to minimize the error function
N
E:(a,b) — Z(a:l:i +b— )2,

i=1

given the fixed parameters xy,...,2xnN,91,...,yn. E is the sum of squares of affine
functions, so it is convex and C°°(R?). Thus, any critical point will be a global minimizer,
such a point is found solving

0=01E(a,b) =237 (ax; + b — y;)z;
0=0E(a,b) =>" (ax; +b—y;)
which is equivalent to the linear system
r Xl |a _ D1 TilYi
i1 Ti n b i1 Yi |

Whose solution is

Ny Tl — Doy Ti i i p— — DI P S VI S SR b SR
nylig xf - ( ) xz’>2 ’ iy x? - ( iy i) ’

where we used

lzznl 9312 D1 T - 1 [ n — 2 T

1
i=1 Ti n ] () o — (T )2 i—1 Ti iy T

This system can be solved uniquely if the determinant is nonzero, that is if

nzn:xf — (XH:Q)Q #0,

i=1

a =
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but this is always a positive number by the QM-AM inequality, unless the 1 = ... = zy
are all equal. In this case the system becomes

lE% Tyl |a _Z?:lyi T
T 1 b o n 1 ’

Z?:l Yi

n

which is solved by a = 0 and b =

Solution of 6.6:
o f1 is convex since its Hessian matrix is 21545 which is positive definite.

Similarly,
2 0
Hf2<xay) = [0 2_12y2] )

which is positive definite if and only if 2 — 12y* > 0, and this is true in the given
domain U (but not in the whole R2...).

e f3 and fy; are not convex since their restriction to the line ¢t — (¢,¢) is not convex
fs(t,t) = fult,t) = =2

» We observe that | - | is convex (like any other norm), this can be checked with the
definition:

[te 4+ (1 —t)y| < t|lz| + (1 — )|yl

were we used the positive homogeneity and the triangular inequality. This proves
that fi is convex.

o We show that also f5 is convex, with a computation using the chain rule, first

0u(0(g(2))) = ¢'(9())dug(x),

and then

0w (8(9(2))) = ¢"(g9(x)) = 0(0ug(2))* + ¢'(g(x))Dung(z) > 0 > 0.

——

It immediately follows that fq is convex, since ¢ — (1 +¢?)1/2 is convex (Analysis I)
and so is x — |z

Similarly fs is convex because it is a sum of convex functions. Since z — z; is
convex and so is ¢t — |t[P, then each |z;[? is convex.

e f7 is not convex since its restriction to the line ¢t — (¢,¢) is the function ¢ +—
—(1 4 2t*)—1/2 which is not convex (Analysis I).
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e f9 is always convex, just write both the convexity inequalities

o(tr + (1 =t)y) <té(z) + (1 = 1)dly) < tfo(z) + (1 = 1) fo(2),
P(tr+ (1 —t)y) < tp(z) + (1 = )v(y) < tfs(z) + (1 —1)fo(),

thus the same bound holds for max{¢(tz + (1 — t)y), Y (tx + (1 —t)y)}.

o It is not necessarily convex, take fi;(z) := e~*l which corresponds to ¢(t) = e*.
f11 cannot be convex since it reaches its absolute maximum value (i.e., 1) in the
interior point x = 0 and it is not constant.

Solution of 6.7:

(a) False. Take f(z)+max{z1,3}*, U = B; C R™ which is convex, has a local maximum
at x = 0 (it is locally constant there), but its gradient does not vanish everywhere.

(b) True. Since z is a local maximum V f(z) = 0, but f is convex so
f@) 2 f(2) +V[f(z) (y—2) = f(2) forall z € U,

but on the other hand f(z) < f(z) for all x € U, because z is a local maximum. We
conclude that f is necessarily constant, thus its gradient vanish identically.

(c) True, pick any x,y € U and t € [0, 1], by definition we known
faltz + (1 =t)y) <tfu(z) + (1 —1)fuly) for all n € N,

if we keep x,y,t fixed and let n — oo we find the convexity inequality for f at those
points. Since x,y,t were arbitrary we conclude that f had to be convex.

(d) False. A convex function lies above its tangent plane at a point, thus in this case
f(z) > 1—2x for all z € R",

(we find it from the Taylor expansion at x = 0). But then we infer that for some
small p > 0 and large M > 0 it must hold

1 — 22 + a5+ M|z|* > f(x) > 1 — 2z, for all |z| < p,
which reshuffling terms is
xy > —M|z|* for all |z| < p,
which is impossible if we take = (0, —r,0,...,0) and let r | 0.
(e) True, f =1— 2z + x5 is itself convex.

(f) False, by definition it is pathwise connected by straight segments, so it is connected.

Solution of 6.8:

(a) False, f =0 is a counterexample.
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(b)
(c)
(d)

False, f = a3 at xp = 0 is a counterexample.
False, f = —x{ at 2o = 0 is a counterexample.

True because all the other statements are indeed false.

Solution of 6.9:

(a)

We use Lagrange multipliers. To begin with, we observe that S! = ¢g=1(0), where
g: R? = Ris given by g(z,y) = 2*> +y* — 1. Hence, a Lagrange function L: R® — R
for our problem is given by

L(:U,y, )‘) = f(:c,y) - )\Q(%,y)

We proceed as in Example 11.7. According to 11.6, at a local extremum p = (z,y) €
g7 1(0), the following equations must be satisfied:

0=0.L(x,y,\) =2x(2—-\) — 1, (1)
0= %L(m,y, )‘) = y(2 - 2)‘)7 (2)
0=0\L(z,y,\) = —(2® +¢* — 1). (3)

We make a case distinction based on equation (2):

(i) If y = 0: Then z? = 1 by 3, i.e.,, x = 1. Thus, there are local extrema at
(1,0) and (—1,0) with function values f(1,0) =1 and f(—1,0) = 2.

(ii)) If A = 1: Then x = % by 1. Substituting into 3 yields y = i@. Hence,

there are additional local extrema at (3, ?) and (3, —@) with function values
[ =1 -9 =1

Comparing function values at all local extrema, we see that the function f on S*
has a global maximum at (—1,0) and two global minima at (3, @) and (3, —@)
Since we have already examined the boundary S' = 9D in part (a), we only need to
check the interior for extrema. To do this, we compute

Df(z,y) = (4z —1,2y).
At a local extremum p = (x,y) of f, we must have
0=Df(z,y) = (4o —1,2y),

ie, p = (r,y) = (i,O). Evidently, p lies in the interior of the unit disk D° =
{(z,y) € R? | 2% +y*> < 1}. We compute the Hessian matrix

4 0
which is positive definite, implying a local minimum at p.

The function value of f at pis f(p) = f(5,0) = —i. Comparing this function

value with those from part (a), we see that f on the closed unit disk D has a global
minimum at (1,0) and a global maximum at (—1,0).
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Solution of 6.10: The Lagrange function corresponding to f and M is given by
L(z,y,2, M\, A0) =37 —y + 22 — M (22 + 42 + 2% — 1) — \a(z +9).
At a local extremum (x,y, z) € M, the following equations must be satisfied:
O L(x,y, 2, A1, A2) =3 =2 M1z — Ay =0
Q,L(x, Y, z, )\1, )\2) =—-1- 2/\1y - )\2 =0
0. L(x,y,z,\1,\2) =2 —=202=0
8A1L($7y7Z>A17 )\2) = _(12 + y2 + 22 - 1) =0
6A2L<x7y7 2 /\17 /\2) = _(I + y) =0

From —x —y = 0 follows y = —x, hence 22 = 1 — 22? = 2z = £+v/1 —222. From
2 —2Xz =0 follows \; = i = i\/iW‘ Moreover, we have

3—2MNzr=—-14+2\xz = 1=\

So,z=x=—yand hence 12 =1—-22% < 31’ =1 < z = :I:%. By substitution
into f, we get

F(H0,-11) =5 =2v3 f(-FH1,-1,1)=-5%=-2V3

Thus, we have found all extrema of f on M, and f attains a maximum at %(1, -1,1)
and a minimum at —%(1, —1,1).

Solution of 6.11: Firstly, if a = b =0, f is the zero function. All points are critical and

global maxima and minima simultaneously.

For critical points (z,y) € R?, we compute the gradient

- 2 2 f:):27y2
V= 2z(a — az® — by*)e ]:0.

2y(b — ax? — by?)e " v’

To classify the critical points, we compute the Hessian matrix H(z,y):

2(a — 5ax® — by? + 2ax* + 2bx*y?) 4ry(ax® —a+ by? — b) _a?y?
dry(az® —a + by? — b) 2(b — 5by? — ax? + 2by* + 2ax*y?) '

e Ifa=0,b+#0, then

2y(b — by?)e™"

From the second coordinate, we deduce y =0ory=—-lory=1. If y =0, x can
be arbitrary satisfying the condition of the first coordinate, otherwise z = 0.
So, the critical points are (z,0) with « € R arbitrary, as well as (0, —1) and (0, 1).

For a = 0:
0 o] 2
e .

_ 2,—x2—y?
Vf:[ 2zby“e 2120‘

A0 =14 o
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The matrix is singular, we also observe this because the critical points lie on the
entire line R x {0}.

With H(0,—1) = H(0,1) = [_026 —(llb] e, (0,—1) and (0,1) are both minima (if
b < 0) and maxima (if b > 0).

o The case a # 0,b = 0 follows symmetrically to (degenerate) critical points (0, y)
with y € R arbitrary, as well as minima (—1,0) and (1,0) if a < 0 and otherwise
maxima.

e The case a # 0,b # 0: If x = 0, similarly y =0 or y = 1 or y = —1. Analogously
for y = 0. We obtain critical points (0,0), (0,1), (0, —1),(1,0),(—1,0). If z # 0 and
y # 0, then a — az? — by? = 0 = b — ax? — by®. Subtracting these equations, we find
a = b. We handle these extra points separately (see below). We compute

2a 0] H(0,41) = [Q(ao— b) 0 ]el,H(il,O) _ [—4@ 0 )] 1

HO,00= 1 9 —4b 0 20b-—a

— If a > b > 0, we have a minimum at (0,0), two saddle points at (0,+1), and
two maxima at (£1,0).

— If b > a > 0, we have a minimum at (0,0), two maxima at (0,£1), and two
saddle points at (£1,0).

— If a > 0 > b, we have a saddle point at (0,0), two minima at (0,41), and two
maxima at (£1,0).

— If b > 0 > a, we have a saddle point at (0,0), two maxima at (0, £1), and two
minima at (£1,0).

— If 0 > a > b, we have a maximum at (0,0), two minima at (0,£1), and two
saddle points at (£1,0).

— If 0 > b > a, we have a maximum at (0,0), two saddle points at (0,+1), and
two minima at (£1,0).

o In the case a = b, we find additional critical points: Since a # 0, 1 — 22 — y? = 0.
Thus, (x,y) lies on the circle with radius 1.

For points with 2% 4+ 3% = 1 and with a = b, the Hessian matrix is

_ 2
H(z,y) — [ dax 4axy] ol

—4azxy —4ay?

It has determinant 0, being singular, as expected, since the entire circle 2% + y? = 1
is a critical set.
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