Problems marked with a $\left(^{*}\right)$ are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems/subquestions marked with (\bigcirc).
6.1. BONUS PROBLEM. Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ be a convex function.
(a) Show that $z \in \mathbb{R}^{n}$ is a critical point of f if and only if z is a global minimizer.
(b) Provide an example of such an f in some \mathbb{R}^{n} with $n>1$, which is always nonnegative, but does not have a minimum point. That is to say

$$
f(x)>\inf _{\mathbb{R}^{n}} f \geq 0 \text { for all } x \in \mathbb{R}^{n} .
$$

You can use all the Theorems seen in class.
6.2. The signature of a 2×2 matrix. Despite the definition, it is not necessary to compute the eigenvalues of a matrix to find its signature ${ }^{1}$. Prove that for a 2×2 matrix M we have the following simple rule to determine the signature in terms of the $\operatorname{det} M$ and $\operatorname{Tr} M$:

- If $\operatorname{det} M>0, \operatorname{Tr} M>0$ then M is positive definite,
- If $\operatorname{det} M>0, \operatorname{Tr} M<0$ then M is negative definite,
- If $\operatorname{det} M<0$ then M is indefinite,
- If $\operatorname{det} M=0$, then M is degenerate.
6.3. Isoperimetric triangles. Among all the triangles with perimeter equal to 2, find the ones with the largest area. You may give for granted Heron's formula, which gives the area of a triangle in terms of the length of its sizes x, y, z :

$$
A=\sqrt{p(p-x)(p-y)(p-z)}, \quad \text { with } 2 p:=x+y+z
$$

so that in our case $p=1$.
6.4. Barycenter (Ω). Let $y_{1}, \ldots, y_{k} \in \mathbb{R}^{n}$ be given. Show that there is exactly one point for which

$$
f(x)=\left\|x-y_{1}\right\|^{2}+\cdots+\left\|x-y_{k}\right\|^{2}, \quad x \in \mathbb{R}^{n}
$$

is minimal and determine this point.
6.5. Linear regression I (ऽ). You study the house market in Zürich over a year in which N houses are sold. You keep track of the size of the houses x_{1}, \ldots, x_{N} and the respective sale prices y_{1}, \ldots, y_{N}. Now you would like would like to find "the" function $f: \mathbb{R} \rightarrow \mathbb{R}$ that gives

$$
\text { sale price }=f \text { (size of the house) },
$$

[^0]and you make the (not unreasonable) assumption that f is affine, i.e., $f_{a, b}(x)=a x+b$ for some coefficients $a, b \in \mathbb{R}$. Among all such functions find (in terms of the data you collected) the value of the parameters a, b that minimizes the average quadratic error
$$
E(a, b):=\sum_{i=1}^{N}\left(y_{i}-f_{a, b}\left(x_{i}\right)\right)^{2}, \quad a, b \in \mathbb{R}
$$
6.6. Convex functions (\triangle). Decide whether the following functions f_{i} are convex in the convex domain $U_{i} \subset \mathbb{R}^{n}$. Try to find, in each case, the simplest argument, you can almost always avoid lengthy computations.

1. $f_{1}(x, y)=x^{2}+y^{2}-4 y$ defined in $U_{1}=\mathbb{R}^{2}$
2. $f_{2}(x, y)=x^{2}+y^{2}-y^{4}$ defined in $U_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<\frac{1}{10000}\right\}$
3. $f_{3}(x, y)=x^{2}+y^{2}-4 x y$ defined in $U_{3}=\mathbb{R}^{2}$
4. $f_{4}(x, y)=x^{2}+y^{2}-4 x y$ defined in $U_{4}=\left\{(x, y) \in \mathbb{R}^{2}: 0<10 x<|y|\right\}$
5. $f_{5}(x)=\phi(g(x)), x \in U_{5}$ where $g \in C^{2}\left(U_{5}\right)$ is any convex function in $U_{5} \subset \mathbb{R}^{n}$ and $\phi \in C^{2}(\mathbb{R})$ is any convex and increasing function.
6. $f_{6}(x, y)=\left(1+x^{2}+y^{2}\right)^{1 / 2}$ defined in $U_{6}=\mathbb{R}^{2}$
7. $f_{7}(x, y)=-\left(1+x^{2}+y^{2}\right)^{-1 / 2}$ defined in $U_{7}=\mathbb{R}^{2}$
8. $f_{8}(x)=\sum_{i=1}^{n}\left|x_{i}\right|^{p}$ in $U_{8}=\mathbb{R}^{n}$, where $p \geq 1$ is some fixed exponent.
9. $f_{9}(x)=\max \{\phi(x), \psi(x)\}$ where $\phi, \psi \in C\left(U_{9}\right)$ are any pair of convex functions defined in some open set $U_{6} \subset \mathbb{R}^{n}$.
10. $f_{10}(x)=|x|$ defined in $U_{10}=\mathbb{R}^{n}$.
11. $f_{11}(x)=\phi(|x|)$ in $U_{11}=B_{1} \subset \mathbb{R}^{n}$, where $\phi \in C(\mathbb{R})$ is any convex function.
6.7. Multiple choice. Among the following statements about convex functions mark those (and only those) which are always true.
(a) If $f \in C^{1}(U)$ is convex in some open convex set $U \subset \mathbb{R}^{n}$ and f has a local maximum at $z \in U$, then $\nabla f \equiv 0$ in U.
(b) If $f \in C^{1}(U)$ is convex in some open convex set $U \subset \mathbb{R}^{n}$ and f has a global maximum at $z \in U$, then $\nabla f \equiv 0$ in U.
(c) Assume $f_{n} \in C^{2}(\mathbb{R})$ is a sequence of convex functions that converge pointwise to some $f: \mathbb{R} \rightarrow \mathbb{R}$. Is f necessarily convex?
(d) There exists a convex function $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
f(x)=1-2 x_{1}+x_{2}^{3}+O\left(|x|^{4}\right) \text { as }|x| \rightarrow 0 .
$$

(e) There exists a convex function $f \in C^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
f(x)=1-2 x_{1}+x_{2}^{4}+O\left(|x|^{4}\right) \text { as }|x| \rightarrow 0 .
$$

(f) A convex set is not necessarily connected.
6.8. Multiple choice. The Hessian matrix of $f \in C^{2}\left(\mathbb{R}^{n}\right)$ is positive semidefinite at a critical point x_{0} of f, i.e.,

$$
\left\langle v, H f\left(x_{0}\right) v\right\rangle \geq 0 \text { for all } v \in \mathbb{R}^{n} .
$$

Which of the following statements necessarily hold? (There may be more than one).
(a) x_{0} is a strict local minimum of f.
(b) x_{0} is a local minimum of f.
(c) x_{0} is not a local maximum of f.
(d) None of the above statements.
6.9. Minimization. The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $f(x, y)=2 x^{2}+y^{2}-x$. Determine the extrema of f on...
(a) \ldots the unit circle $\mathbb{S}^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$;
(b) . . . the closed unit disk $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$.
6.10. Lagrange Multipliers ($($). Consider the function $f(x, y, z)=3 x-y+2 z$ and the set

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1, x+y=0\right\} .
$$

Determine the extrema of f on M and their nature.
6.11. Critical Points. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $f(x, y)=\left(a x^{2}+b y^{2}\right) e^{-x^{2}-y^{2}}$ with real parameters $a, b \in \mathbb{R}$. Find all critical points and determine their nature with the Hessian test, depending on a, b.

Hints:

6.2 Use the spectral Theorem and the properties:

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \quad \operatorname{Tr}(A B)=\operatorname{Tr}(B A) .
$$

6.3 Minimize A^{2} instead of A. You can use the method of Lagrange multipliers.
6.5 Do not get distracted by the setting, you after all you have to minimize a quadratic polynomial of $a, b \ldots$.

6. Solutions

Solution of 6.1:

(a) If $z \in \mathbb{R}^{n}$ is a global minimum point then $\nabla f(z)=0$ by Proposition 11.4. If $\nabla f(z)$ then by Proposition 11.24 it holds

$$
f(y) \geq f(z)+\nabla f(z) \cdot(y-z)=f(z) \text { for all } y \in \mathbb{R}^{n}
$$

which means - by definition - that z is a global minimizer.
(b) $f(x):=e^{x_{1}+x_{2}}$ works. Clearly $f(x)>0$ for all $x \in \mathbb{R}^{2}$, and $\lim _{t \rightarrow \infty} f(-t,-t)=$ $\lim _{t \rightarrow \infty} e^{-2 t}=0$, so $\inf _{\mathbb{R}^{2}} f=0$. Furthermore f is convex since for all unit vectors v we have

$$
\partial_{v} f(x)=e^{x_{1}+x_{2}}\left(v_{1}+v_{2}\right),
$$

and

$$
\partial_{v v} f(x)=e^{x_{1}+x_{2}}\left(v_{1}+v_{2}\right)^{2} \geq 0 .
$$

Solution of 6.2: By the Spectral Theorem there is $O \in \mathbb{R}^{2 \times 2}$ such that

$$
O M O^{T}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad O O^{T}=\mathbf{1} \text { (in particular } \operatorname{det} O= \pm 1 \text {) }
$$

with $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. Thus we can see the (perhaps well-known) fact that

$$
\operatorname{det} M=\operatorname{det}\left(O M O^{T}\right)=\lambda_{1} \lambda_{2}, \quad \operatorname{Tr} M=\operatorname{Tr}\left(M O^{T} O\right)=\operatorname{Tr}\left(O M O^{T}\right)=\lambda_{1}+\lambda_{2}
$$

It is immediate now to check that

- $\lambda_{1} \lambda_{2}>0, \lambda_{1}+\lambda_{2}>0$ implies that $\lambda_{1}>0$ and $\lambda_{2}>0$.
- $\lambda_{1} \lambda_{2}>0, \lambda_{1}+\lambda_{2}<0$ implies that $\lambda_{1}<0$ and $\lambda_{2}<0$.
- $\lambda_{1} \lambda_{2}<0$ implies that one of the λ_{i} is positive and the other negative.
- $\lambda_{1} \lambda_{2}=0$ implies that one of them is zero.

Solution of 6.3: The set open of possible (x, y, z) that represent sides of a triangle is given by

$$
U:=\left\{(x, y, z) \in \mathbb{R}^{3}: x>0, y>0, z>0, x+y>z, y+z>x, z+x>y\right\} .
$$

We seek to minimize the area, which is the same as minimizing the its square, which by Heron's formula is given by

$$
f(x, y, z)=A^{2}=(1-x)(1-y)(1-z), \quad(x, y, z) \in U
$$

subject to the constraint $x+y+z=2$. By Weierstrass Theorem f admits a maximum point $\left(x_{0}, y_{0}, z_{0}\right) \in \bar{U} \cap\{x+y+z=2\}$.

Case 1: $\left(x_{0}, y_{0}, z_{0}\right)$ lies on $\boldsymbol{\partial} \boldsymbol{U}$. Notice that any point in the closure \bar{U} needs to satisfy

$$
U:=\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y \geq 0, z \geq 0, x+y \geq z, y+z \geq x, z+x \geq y\right\}
$$

as can be seen taking a converging sequence of elements of U. Thus, an element on the boundary $\partial U=\bar{U} \backslash U$, must satisfy at least one among the following (otherwise it would lie in the interior)

$$
x=0, \quad y=0, \quad z=0, \quad x+y=z, \quad y+z=x, \quad z+x=y .
$$

In all these cases we have that our triangle degenerates into a segment (one of the sides is zero!) and so f must vanish at these points, which must be minimum points. Let us check this:

- If (say) $x=0$, then $y \geq z$ and $z \geq y$, so $z=y$. Since the perimeter is 2 we find $y=z=1$, which leads to $f(0,1,1)=0$. The other cases are symmetric.
- If (say) $x+y=z$, then $2-z=z$, thus $z=1$ and so $f(x, y, 1)=0$. The other cases are symmetric.
We conclude that the "battle for the maximum" is fought in the interior of U.
Case 2: $\left(x_{0}, y_{0}, z_{0}\right)$ lies in the interior of U. The method of Lagrange multipliers applies with $g(x, y, z):=x+y+z-1$ and, since ∇g is never zero, gives the system

$$
\left\{\begin{array}{l}
(1-y)(1-z)=\lambda \\
(1-z)(1-x)=\lambda \\
(1-x)(1-y)=\lambda \\
x+y+z=2, \\
(x, y, z) \in U, \lambda \in \mathbb{R} .
\end{array}\right.
$$

We solve this system. First we claim that no one among x, y, z can be equal to one. For example assume $z=1$, then necessarily $\lambda=0$ and then also $(1-x)(1-y)=0$ so $x=1$ or $y=1$. Since $x+y+z=2$ we find that one among x, y is zero, contradicting $(x, y, z) \in U$.

Now proceed taking the difference of the first two equation, finding

$$
0=(1-z)(x-y),
$$

which, since $z \neq 1$, leads to $x=y$. If we take now the difference between the second two equations we find

$$
(1-x)(y-z)=0,
$$

and, since $x \neq 1$, we find $y=z$. Thus the only solution of this system needs to satisfy

$$
x=y=z, x+y+z=2 \Rightarrow x=y=z=\frac{2}{3},
$$

since we assumed $\left(x_{0}, y_{0}, z_{0}\right) \in U$ we know that it solves the system, hence

$$
\left(x_{0}, y_{0}, z_{0}\right)=\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right), f\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)=1 / 27
$$

which corresponds to the equilateral triangle.
Solution of 6.4: We start observing that f is a sum of convex functions hence it is convex. Furthermore f is smooth (it is a polynomial). Since f is convex, a point is a global minimizer if and only if it is a critical point. We prove that there is a unique critical point, proving simultaneously that there exist a minimum point, and that it is unique.

We obtain for the partial derivatives of f

$$
\partial_{x_{j}} f(x)=2 \sum_{i=1}^{k}\left(x_{j}-\left(y_{i}\right)_{j}\right) .
$$

For x to be a critical point, $\partial_{x_{j}} f(x)=0$ for all j, hence $x_{j}=\frac{1}{k} \sum_{i=1}^{k}\left(y_{i}\right)_{j}$. Direct calculation yields

$$
\partial_{x_{l}} \partial_{x_{j}} f(x)=2 k \delta_{l j},
$$

thus H is diagonal with entries $2 k$ for all $x \in \mathbb{R}^{n}$. We obtain that H is positive definite, hence at the critical point, there is a minimum, and the point defining the minimum is uniquely determined by the equality $x_{j}=\frac{1}{k} \sum_{i=1}^{k}\left(y_{i}\right)_{j}$.

Solution of 6.5: We are asked to minimize the error function

$$
E:(a, b) \mapsto \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right)^{2},
$$

given the fixed parameters $x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{N}$. E is the sum of squares of affine functions, so it is convex and $C^{\infty}\left(\mathbb{R}^{2}\right)$. Thus, any critical point will be a global minimizer, such a point is found solving

$$
\left\{\begin{array}{l}
0=\partial_{1} E(a, b)=2 \sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right) x_{i} \\
0=\partial_{2} E(a, b)=\sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right)
\end{array}\right.
$$

which is equivalent to the linear system

$$
\left[\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} & n
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{n} x_{i} y_{i} \\
\sum_{i=1}^{n} y_{i}
\end{array}\right] .
$$

Whose solution is

$$
a=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}, \quad b=\frac{-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}},
$$

where we used

$$
\left[\begin{array}{cc}
\sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} \\
\sum_{i=1}^{n} x_{i} & n
\end{array}\right]^{-1}=\frac{1}{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \cdot n-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}\left[\begin{array}{cc}
n & -\sum_{i=1}^{n} x_{i} \\
-\sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2}
\end{array}\right]
$$

This system can be solved uniquely if the determinant is nonzero, that is if

$$
n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2} \neq 0
$$

but this is always a positive number by the QM-AM inequality, unless the $x_{1}=\ldots=x_{N}$ are all equal. In this case the system becomes

$$
\left[\begin{array}{cc}
x_{1}^{2} & x_{1} \\
x_{1} & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=\frac{\sum_{i=1}^{n} y_{i}}{n}\left[\begin{array}{c}
x_{1} \\
1
\end{array}\right]
$$

which is solved by $a=0$ and $b=\frac{\sum_{i=1}^{n} y_{i}}{n}$.

Solution of 6.6:

- f_{1} is convex since its Hessian matrix is $2 \mathbf{1}_{2 \times 2}$ which is positive definite.

Similarly,

$$
H f_{2}(x, y)=\left[\begin{array}{cc}
2 & 0 \\
0 & 2-12 y^{2}
\end{array}\right],
$$

which is positive definite if and only if $2-12 y^{2}>0$, and this is true in the given domain U (but not in the whole $\mathbb{R}^{2} \ldots$).

- f_{3} and f_{4} are not convex since their restriction to the line $t \mapsto(t, t)$ is not convex

$$
f_{3}(t, t)=f_{4}(t, t)=-2 t^{2} .
$$

- We observe that $|\cdot|$ is convex (like any other norm), this can be checked with the definition:

$$
|t x+(1-t) y| \leq t|x|+(1-t)|y|
$$

were we used the positive homogeneity and the triangular inequality. This proves that f_{10} is convex.

- We show that also f_{5} is convex, with a computation using the chain rule, first

$$
\partial_{v}(\phi(g(x)))=\phi^{\prime}(g(x)) \partial_{v} g(x),
$$

and then

$$
\partial_{v v}(\phi(g(x)))=\underbrace{\phi^{\prime \prime}(g(x))} \geq 0\left(\partial_{v} g(x)\right)^{2}+\underbrace{\phi^{\prime}(g(x)) \partial_{v v} g(x)} \geq 0 \geq 0 .
$$

It immediately follows that f_{6} is convex, since $t \mapsto\left(1+t^{2}\right) 1 / 2$ is convex (Analysis I) and so is $x \mapsto|x|$.

Similarly f_{8} is convex because it is a sum of convex functions. Since $x \mapsto x_{i}$ is convex and so is $t \mapsto|t|^{p}$, then each $\left|x_{i}\right|^{p}$ is convex.

- f_{7} is not convex since its restriction to the line $t \mapsto(t, t)$ is the function $t \mapsto$ $-\left(1+2 t^{2}\right)-1 / 2$ which is not convex (Analysis I).
- f_{9} is always convex, just write both the convexity inequalities

$$
\begin{aligned}
\phi(t x+(1-t) y) & \leq t \phi(x)+(1-t) \phi(y) \leq t f_{6}(x)+(1-t) f_{6}(x), \\
\psi(t x+(1-t) y) & \leq t \psi(x)+(1-t) \psi(y) \leq t f_{6}(x)+(1-t) f_{6}(x),
\end{aligned}
$$

thus the same bound holds for $\max \{\phi(t x+(1-t) y), \psi(t x+(1-t) y)\}$.

- It is not necessarily convex, take $f_{11}(x):=e^{-|x|}$ which corresponds to $\phi(t)=e^{-t}$. f_{11} cannot be convex since it reaches its absolute maximum value (i.e., 1) in the interior point $x=0$ and it is not constant.

Solution of 6.7:

(a) False. Take $f(x)+\max \left\{x_{1}, \frac{1}{2}\right\}^{4}, U=B_{1} \subset \mathbb{R}^{n}$ which is convex, has a local maximum at $x=0$ (it is locally constant there), but its gradient does not vanish everywhere.
(b) True. Since z is a local maximum $\nabla f(z)=0$, but f is convex so

$$
f(x) \geq f(z)+\nabla f(z) \cdot(y-z)=f(z) \text { for all } x \in U
$$

but on the other hand $f(x) \leq f(z)$ for all $x \in U$, because z is a local maximum. We conclude that f is necessarily constant, thus its gradient vanish identically.
(c) True, pick any $x, y \in U$ and $t \in[0,1]$, by definition we known

$$
f_{n}(t x+(1-t) y) \leq t f_{n}(x)+(1-t) f_{n}(y) \text { for all } n \in \mathbb{N},
$$

if we keep x, y, t fixed and let $n \rightarrow \infty$ we find the convexity inequality for f at those points. Since x, y, t were arbitrary we conclude that f had to be convex.
(d) False. A convex function lies above its tangent plane at a point, thus in this case

$$
f(x) \geq 1-2 x_{1} \text { for all } x \in \mathbb{R}^{n},
$$

(we find it from the Taylor expansion at $x=0$). But then we infer that for some small $\rho>0$ and large $M>0$ it must hold

$$
1-2 x_{1}+x_{2}^{3}+M|x|^{4} \geq f(x) \geq 1-2 x_{1} \text { for all }|x|<\rho,
$$

which reshuffling terms is

$$
x_{2}^{3} \geq-M|x|^{4} \text { for all }|x|<\rho,
$$

which is impossible if we take $x=(0,-r, 0, \ldots, 0)$ and let $r \downarrow 0$.
(e) True, $f=1-2 x_{1}+x_{2}^{4}$ is itself convex.
(f) False, by definition it is pathwise connected by straight segments, so it is connected.

Solution of 6.8:

(a) False, $f \equiv 0$ is a counterexample.
(b) False, $f=x_{1}^{3}$ at $x_{0}=0$ is a counterexample.
(c) False, $f=-x_{1}^{4}$ at $x_{0}=0$ is a counterexample.
(d) True because all the other statements are indeed false.

Solution of 6.9:

(a) We use Lagrange multipliers. To begin with, we observe that $\mathbb{S}^{1}=g^{-1}(0)$, where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $g(x, y)=x^{2}+y^{2}-1$. Hence, a Lagrange function $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ for our problem is given by

$$
L(x, y, \lambda)=f(x, y)-\lambda g(x, y)
$$

We proceed as in Example 11.7. According to 11.6, at a local extremum $p=(x, y) \in$ $g^{-1}(0)$, the following equations must be satisfied:

$$
\begin{align*}
& 0=\partial_{x} L(x, y, \lambda)=2 x(2-\lambda)-1 \tag{1}\\
& 0=\partial_{y} L(x, y, \lambda)=y(2-2 \lambda) \tag{2}\\
& 0=\partial_{\lambda} L(x, y, \lambda)=-\left(x^{2}+y^{2}-1\right) \tag{3}
\end{align*}
$$

We make a case distinction based on equation (2):
(i) If $y=0$: Then $x^{2}=1$ by 3 , i.e., $x= \pm 1$. Thus, there are local extrema at $(1,0)$ and $(-1,0)$ with function values $f(1,0)=1$ and $f(-1,0)=2$.
(ii) If $\lambda=1$: Then $x=\frac{1}{2}$ by 1 . Substituting into 3 yields $y= \pm \frac{\sqrt{3}}{2}$. Hence, there are additional local extrema at $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ with function values $f\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=f\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=\frac{3}{4}$.

Comparing function values at all local extrema, we see that the function f on \mathbb{S}^{1} has a global maximum at $(-1,0)$ and two global minima at $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$.
(b) Since we have already examined the boundary $\mathbb{S}^{1}=\partial \mathbb{D}$ in part (a), we only need to check the interior for extrema. To do this, we compute

$$
D f(x, y)=(4 x-1,2 y) .
$$

At a local extremum $p=(x, y)$ of f, we must have

$$
0=D f(x, y)=(4 x-1,2 y)
$$

i.e., $p=(x, y)=\left(\frac{1}{4}, 0\right)$. Evidently, p lies in the interior of the unit disk $\mathbb{D}^{\circ}=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$. We compute the Hessian matrix

$$
H_{f}(x, y)=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right],
$$

which is positive definite, implying a local minimum at p.
The function value of f at p is $f(p)=f\left(\frac{1}{4}, 0\right)=-\frac{1}{8}$. Comparing this function value with those from part (a), we see that f on the closed unit disk \mathbb{D} has a global minimum at $\left(\frac{1}{4}, 0\right)$ and a global maximum at $(-1,0)$.

Solution of 6.10: The Lagrange function corresponding to f and M is given by

$$
L\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=3 x-y+2 z-\lambda_{1}\left(x^{2}+y^{2}+z^{2}-1\right)-\lambda_{2}(x+y) .
$$

At a local extremum $(x, y, z) \in M$, the following equations must be satisfied:

$$
\begin{aligned}
& \partial_{x} L\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=3-2 \lambda_{1} x-\lambda_{2}=0 \\
& \partial_{y} L\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=-1-2 \lambda_{1} y-\lambda_{2}=0 \\
& \partial_{z} L\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=2-2 \lambda_{1} z=0 \\
& \partial_{\lambda_{1}} L\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=-\left(x^{2}+y^{2}+z^{2}-1\right)=0 \\
& \partial_{\lambda_{2}} L\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=-(x+y)=0
\end{aligned}
$$

From $-x-y=0$ follows $y=-x$, hence $z^{2}=1-2 x^{2} \Longrightarrow z= \pm \sqrt{1-2 x^{2}}$. From $2-2 \lambda_{1} z=0$ follows $\lambda_{1}=\frac{1}{z}=\frac{1}{ \pm \sqrt{1-2 x^{2}}}$. Moreover, we have

$$
3-2 \lambda_{1} x=-1+2 \lambda_{1} x \Longrightarrow 1=\lambda_{1} x .
$$

So, $z=x=-y$ and hence $x^{2}=1-2 x^{2} \Longleftrightarrow 3 x^{2}=1 \Longleftrightarrow x= \pm \frac{1}{\sqrt{3}}$. By substitution into f, we get

$$
f\left(\frac{1}{\sqrt{3}}(1,-1,1)\right)=\frac{6}{\sqrt{3}}=2 \sqrt{3}, \quad f\left(-\frac{1}{\sqrt{3}}(1,-1,1)\right)=-\frac{6}{\sqrt{3}}=-2 \sqrt{3} .
$$

Thus, we have found all extrema of f on M, and f attains a maximum at $\frac{1}{\sqrt{3}}(1,-1,1)$ and a minimum at $-\frac{1}{\sqrt{3}}(1,-1,1)$.

Solution of 6.11: Firstly, if $a=b=0, f$ is the zero function. All points are critical and global maxima and minima simultaneously.
For critical points $(x, y) \in \mathbb{R}^{2}$, we compute the gradient

$$
\nabla f=\left[\begin{array}{l}
2 x\left(a-a x^{2}-b y^{2}\right) e^{-x^{2}-y^{2}} \\
2 y\left(b-a x^{2}-b y^{2}\right) e^{-x^{2}-y^{2}}
\end{array}\right]=0 .
$$

To classify the critical points, we compute the Hessian matrix $H(x, y)$:

$$
\left[\begin{array}{cc}
2\left(a-5 a x^{2}-b y^{2}+2 a x^{4}+2 b x^{2} y^{2}\right) & 4 x y\left(a x^{2}-a+b y^{2}-b\right) \\
4 x y\left(a x^{2}-a+b y^{2}-b\right) & 2\left(b-5 b y^{2}-a x^{2}+2 b y^{4}+2 a x^{2} y^{2}\right)
\end{array}\right] e^{-x^{2}-y^{2}} .
$$

- If $a=0, b \neq 0$, then

$$
\nabla f=\left[\begin{array}{c}
-2 x b y^{2} e^{-x^{2}-y^{2}} \\
2 y\left(b-b y^{2}\right) e^{-x^{2}-y^{2}}
\end{array}\right]=0
$$

From the second coordinate, we deduce $y=0$ or $y=-1$ or $y=1$. If $y=0, x$ can be arbitrary satisfying the condition of the first coordinate, otherwise $x=0$.
So, the critical points are $(x, 0)$ with $x \in \mathbb{R}$ arbitrary, as well as $(0,-1)$ and $(0,1)$. For $a=0$:

$$
H(x, 0)=\left[\begin{array}{cc}
0 & 0 \\
0 & 2 b
\end{array}\right] e^{-x^{2}}
$$

The matrix is singular, we also observe this because the critical points lie on the entire line $\mathbb{R} \times\{0\}$.
With $H(0,-1)=H(0,1)=\left[\begin{array}{cc}-2 b & 0 \\ 0 & -4 b\end{array}\right] e^{-1},(0,-1)$ and $(0,1)$ are both minima (if $b<0$) and maxima (if $b>0$).

- The case $a \neq 0, b=0$ follows symmetrically to (degenerate) critical points ($0, y$) with $y \in \mathbb{R}$ arbitrary, as well as minima $(-1,0)$ and $(1,0)$ if $a<0$ and otherwise maxima.
- The case $a \neq 0, b \neq 0$: If $x=0$, similarly $y=0$ or $y=1$ or $y=-1$. Analogously for $y=0$. We obtain critical points $(0,0),(0,1),(0,-1),(1,0),(-1,0)$. If $x \neq 0$ and $y \neq 0$, then $a-a x^{2}-b y^{2}=0=b-a x^{2}-b y^{2}$. Subtracting these equations, we find $a=b$. We handle these extra points separately (see below). We compute
$H(0,0)=\left[\begin{array}{cc}2 a & 0 \\ 0 & 2 b\end{array}\right], H(0, \pm 1)=\left[\begin{array}{cc}2(a-b) & 0 \\ 0 & -4 b\end{array}\right] e^{-1}, H(\pm 1,0)=\left[\begin{array}{cc}-4 a & 0 \\ 0 & 2(b-a)\end{array}\right] e^{-1}$
- If $a>b>0$, we have a minimum at $(0,0)$, two saddle points at $(0, \pm 1)$, and two maxima at $(\pm 1,0)$.
- If $b>a>0$, we have a minimum at $(0,0)$, two maxima at $(0, \pm 1)$, and two saddle points at $(\pm 1,0)$.
- If $a>0>b$, we have a saddle point at $(0,0)$, two minima at $(0, \pm 1)$, and two maxima at $(\pm 1,0)$.
- If $b>0>a$, we have a saddle point at $(0,0)$, two maxima at $(0, \pm 1)$, and two minima at ($\pm 1,0$).
- If $0>a>b$, we have a maximum at $(0,0)$, two minima at $(0, \pm 1)$, and two saddle points at $(\pm 1,0)$.
- If $0>b>a$, we have a maximum at $(0,0)$, two saddle points at $(0, \pm 1)$, and two minima at $(\pm 1,0)$.
- In the case $a=b$, we find additional critical points: Since $a \neq 0,1-x^{2}-y^{2}=0$. Thus, (x, y) lies on the circle with radius 1 .

For points with $x^{2}+y^{2}=1$ and with $a=b$, the Hessian matrix is

$$
H(x, y)=\left[\begin{array}{ll}
-4 a x^{2} & -4 a x y \\
-4 a x y & -4 a y^{2}
\end{array}\right] e^{-1}
$$

It has determinant 0 , being singular, as expected, since the entire circle $x^{2}+y^{2}=1$ is a critical set.

[^0]: ${ }^{1}$ Ask ChatGPT about the Principal Minor Theorem

