Problems marked with a $\left(^{*}\right)$ are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems/subquestions marked with (\bigcirc).

7.1. BONUS PROBLEM.

(a) Give a diffeomorphism between \mathbb{R}^{2} and $(0,1) \times(0,1)$.
(b) Is $f(x)=x^{5}, x \in \mathbb{R}$ a diffeomorphism of \mathbb{R} to itself? Motivate rigorously your answer.
7.2. Inverse function I. ($\left(\right.$) Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $F(x, y)=$ $\left(x^{2} y, x y^{2}\right)$. Show that F is locally invertible around all points (x, y) such that $x \neq 0$ and $y \neq 0$. Compute the differential of the local inverse of F at the point $F(2,1)$.
7.3. Implicit Function I. (() Sketch the zero set of the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

1. $f(x, y)=x^{2}+y^{2}-1$,
2. $f(x, y)=y^{2}(1-x)-x^{3}$,
3. $f(x, y)=y^{2}-x^{2}(x+1)$,
4. $f(x, y)=x y(x+y-1)$,
5. $f(x, y)=x^{2} y^{2}-x^{2}-y^{2}+1$.

You can also use software to help you.
At which points $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, does the Implicit Function Theorem imply that the function can be locally resolved with respect to x (or with respect to y, with respect to both, or possibly with respect to neither variable)? Mark these points in your sketch.
7.4. Multiple choice. (\triangle) Mark all and only the true statements
(a) Let $U \subset \mathbb{R}^{n}$ be open and $f \in C^{1}\left(U, \mathbb{R}^{n}\right)$ such that $\operatorname{det} J f(x)>0$ for all $x \in U$. Then the set $f(U)$ is open.
(b) Let $U \subset \mathbb{R}^{n}$ be open and $f \in C^{1}\left(U, \mathbb{R}^{n}\right)$ such that $\operatorname{det} J f(x)>0$ for all $x \in U$. Then f is injective.
(c) Is there a diffeomorphism $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\phi(U)=V$, with $U:=\left\{x^{2}+y^{2}<\right.$ $1\} \subset \mathbb{R}^{2}$ and $V:=\left\{x^{2}+y^{2} \leq 1\right\} \subset \mathbb{R}^{2}$.
(d) $\left(^{*}\right.$) Let T be a triangle and Q be a square on the plane (just the boundary, not the interior). Is there a diffeomorphism $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\phi(T)=Q$?
7.5. Implicit function II. Show that the system of equations

$$
\left\{\begin{array}{l}
x y^{5}+y u^{5}+z v^{5}=1, \\
x^{5} y+y^{5} u+z^{5} v=1,
\end{array}\right.
$$

is solvable for the variables u and v in a neighborhood of the point $\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}\right)=$ $(0,1,1,1,0)$ and determine the derivatives $D_{(0,1,1)} u$ and $D_{(0,1,1)} v$ of the implicitly defined functions $u=u(x, y, z)$ and $v=v(x, y, z)$.
7.6. Spherical Coordinates. The mapping $\Phi:(0, \infty) \times(0, \pi) \times(-\pi, \pi) \rightarrow \mathbb{R}^{3}$ defined by

$$
\Phi(r, \theta, \varphi)=\left(\begin{array}{c}
r \sin \theta \cos \varphi \\
r \sin \theta \sin \varphi \\
r \cos \theta
\end{array}\right)
$$

is called spherical coordinates.

1. Sketch the images of $r \mapsto \Phi\left(r, \theta_{0}, \varphi_{0}\right), \theta \mapsto \Phi\left(r_{0}, \theta, \varphi_{0}\right)$ and $\varphi \mapsto \Phi\left(r_{0}, \theta_{0}, \varphi\right)$ for some fixed $r_{0} \in(0, \infty), \theta_{0} \in(0, \pi), \varphi_{0} \in(-\pi, \pi)$.
2. What is the image of Φ ?
3. Show that $\operatorname{det}\left(D_{(r, \theta, \varphi)} \Phi\right)=r^{2} \sin \theta$ holds.
4. Conclude that the mapping Φ is a diffeomorphism onto its image.
7.7. The IFT is only a sufficient condition. We consider the function $f(x, y)=$ $y^{2}(1-x)-x^{3}$ from Exercise 6.3.3 in more detail.
5. Show that we cannot conclude from the implicit function theorem that f is solvable for x in a neighborhood of $(0,0)$.
6. Show, however, that the equation $f(x, y)=0$ can be uniquely solved for x everywhere. Hint: Analyze the mapping $x \mapsto \frac{x^{3}}{1-x}$ on a suitable domain.
7. Denote by $Y(x)$ the function such that $f(x, Y(x))=0$ around $x=2$. Compute $Y^{\prime \prime}(1)$. Hint: Derive twice with respect to x the identity $f(x, Y(x))=0$ end evaluate it at $x=2$.

7. Solutions

Solution of 7.1:

Solution of 7.2:

Solution of 7.3: Below, we draw the set of roots $N=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=0\right\}$ of the function f. Using the implicit function theorem, we differentiate the following cases:

- the points where one can locally resolve with respect to x and y, in blue (i.e., $\left.\left\{(x, y) \in N \mid \partial_{x} f(x, y), \partial_{y} f(x, y) \neq 0\right\}\right)$,
- the points where one can locally resolve with respect to y but possibly not with respect to x, in yellow (i.e., $\left\{(x, y) \in N \mid \partial_{x} f(x, y)=0, \partial_{y} f(x, y) \neq 0\right\}$),
- the points where one can locally resolve with respect to x but possibly not with respect to y, in red (i.e., $\left\{(x, y) \in N \mid \partial_{x} f(x, y) \neq 0, \partial_{y} f(x, y)=0\right\}$),
- the points where one can locally possibly resolve neither with respect to x nor with respect to y, in orange (i.e., $\left\{(x, y) \in N \mid \partial_{x} f(x, y)=\partial_{y} f(x, y)=0\right\}$).

1. $D_{(x, y)} f=\binom{2 x}{2 y}$

2. $D_{(x, y)} f=\binom{-\left(y^{2}+3 x^{2}\right)}{2 y(1-x)}$

3. $D_{(x, y)} f=\binom{-x(3 x+2)}{2 y}$

4. $D_{(x, y)} f=\binom{y(2 x+y-1)}{x(x+2 y-1)}$

5. The function is $f(x, y)=\left(x^{2}-1\right)\left(y^{2}-1\right)$. We get $D_{(x, y)} f=\binom{2 x\left(y^{2}-1\right)}{2 y\left(x^{2}-1\right)}$

Solution of 7.4:

Solution of 7.5: We write the given system of equations as $F(x, y, z, u, v)=0$ for the function $F: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ given by

$$
F(x, y, z, u, v)=\binom{x y^{5}+y u^{5}+z v^{5}-1}{x^{5} y+y^{5} u+z^{5} v-1} .
$$

The derivative is

$$
D_{(x, y, z, v, u)} F=\left(\begin{array}{ccccc}
y^{5} & 4 x y^{4}+u^{5} & v^{5} & 5 y u^{4} & 5 z v^{4} \\
5 x^{4} y & x^{5}+5 y^{4} u & 5 z^{4} v & y^{5} & z^{5}
\end{array}\right)
$$

and thus

$$
D_{(0,1,1,1,0)} F=\left(\begin{array}{lllll}
1 & 1 & 0 & 5 & 0 \\
0 & 5 & 0 & 1 & 1
\end{array}\right) .
$$

According to the implicit function theorem (Theorem 11.1, 11.2) applied to ($0,1,1,1,0$), we need to check that the submatrix of the differential $D F$ consisting of the partial derivatives with respect to u and v is invertible. Indeed, the relevant submatrix is the matrix $\left(\begin{array}{cc}5 & 0 \\ 1 & 1\end{array}\right)$ with determinant $5 \neq 0$. Therefore, by the implicit function theorem, for the locally defined function $G(x, y, z)=(u(x, y, z), v(x, y, z))$, we have

$$
D_{(0,1,1)} G=-\left(\begin{array}{ll}
5 & 0 \\
1 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 5 & 0
\end{array}\right)=-\frac{1}{5}\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 24 & 0
\end{array}\right)
$$

So, $D_{(0,1,1)} u=-\frac{1}{5}\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ and $D_{(0,1,1)} v=-\frac{1}{5}\left(\begin{array}{lll}-1 & 24 & 0\end{array}\right)$.

Solution of 7.6:

1. - Fixing $\theta_{0} \in(0, \pi), \varphi_{0} \in(-\pi, \pi), p_{0}=\left(\begin{array}{c}\sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta\end{array}\right)$ defines a point on the sphere. The image of $r \mapsto \Phi\left(r, \theta_{0}, \varphi_{0}\right)$ consists of the points $r p_{0}$ with $r \in(0, \infty)$, forming a radial line.

- Fixing $r_{0} \in(0, \infty), \varphi_{0} \in(-\pi, \pi)$, the image of $\theta \mapsto \Phi\left(r_{0}, \theta, \varphi_{0}\right)$ is a semicircle on the sphere with radius r_{0}, ranging from the north pole to the south pole at longitude φ_{0} (excluding the poles). Negative φ_{0} is sometimes denoted as West, and positive φ_{0} as East. In geography, degrees are often used instead of radians for angles.
(see https://en.wikipedia.org/wiki/Meridian_(geography))
- Fixing $r_{0} \in(0, \infty), \theta_{0} \in(0, \pi)$, the image of $\varphi \mapsto \Phi\left(r_{0}, \theta_{0}, \varphi\right)$ is a parallel circle on the sphere with radius r_{0} at latitude θ_{0}. In geography, latitude is measured as a value in degrees in $\left(90^{\circ} \mathrm{S}, 90^{\circ} \mathrm{N}\right)$, which corresponds to the angle $\frac{\pi}{2}-\theta_{0}$ in mathematics. Note that the point on the equator is not included in the image. (see https://en.wikipedia.org/wiki/Circle_of_latitude)

2. For each r, the image is the sphere of radius r excluding the prime meridian. Overall, the image is

$$
\left.\mathbb{R}^{3} \backslash\left\{(x, 0, z) \in \mathbb{R}^{3} \mid x \leq 0\right\}=\mathbb{R}^{3} \backslash(-\infty, 0] \times\{0\} \times \mathbb{R}\right)
$$

3. We compute:

$$
D_{(r, \theta, \varphi)}=\left(\begin{array}{ccc}
\sin \theta \cos \varphi & r \cos \theta \cos \varphi & -r \sin \theta \sin \varphi \\
\sin \theta \sin \varphi & r \cos \theta \sin \varphi & r \sin \theta \cos \varphi \\
\cos \theta & -r \sin \theta & 0
\end{array}\right)
$$

hence

$$
\begin{aligned}
D_{(r, \theta, \varphi)} & =r^{2} \sin \theta \cos ^{2} \theta \cos ^{2} \varphi+r^{2} \sin ^{3} \theta \sin ^{2} \varphi+r^{2} \sin \theta \cos ^{2} \theta \sin ^{2} \varphi+r^{2} \sin ^{3} \theta \cos ^{2} \varphi \\
& =r^{2}\left(\sin \theta \cos ^{2} \theta+\sin ^{3} \theta\right)=r^{2} \sin \theta
\end{aligned}
$$

4. Since $r \in(0, \infty)$ and $\theta \in(0, \pi), r^{2} \sin \theta$ is never 0 . Thus, Φ is a local diffeomorphism. To show that Φ is a global diffeomorphism onto its image, we need to show that Φ is injective:
If $\Phi\left(r_{1}, \theta_{1}, \varphi_{1}\right)=\Phi\left(r_{2}, \theta_{2}, \varphi_{2}\right)$, then $r_{1}=r_{2}$ follows when taking the magnitude.
Since $\cos :(0, \pi) \rightarrow(-1,1)$ is injective, we have $\theta_{1}=\theta_{2}$ from the third coordinate.
Finally, we find $\varphi_{1}=\varphi_{2}$, since $(\cos \varphi, \sin \varphi)$ with $\varphi \in(-\pi, \pi)$ describes a unique point on the unit circle.

Solution of 7.7:

1. We have $D_{(0,0)} f=\left(\begin{array}{ll}0 & 0\end{array}\right)$, thus $\partial_{y} f(0,0)=0$. Therefore, the theorem is not applicable at $(0,0)$.
2. Let $y \in \mathbb{R}$. We want to show that there exists a unique $x \in \mathbb{R}$ such that $y^{2}(1-x)-$ $x^{3}=0$. Note that when $x=1$, the equation $y^{2}(1-x)-x^{3}=0$ cannot be satisfied. Moreover, from $y^{2}=\frac{x^{3}}{1-x}$, it follows that the right-hand side must be non-negative, as it is a square of a number. Let $g: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R}$ be the function

$$
x \mapsto \frac{x^{3}}{1-x}
$$

The pre-image of non-negative values $y^{2} \in[0, \infty)$ is $x \in[0,1)$. We need to show that the mapping is unique, i.e., g is injective on $[0,1)$. The derivative of g is

$$
g^{\prime}(x)=\frac{(3-2 x) x^{2}}{(1-x)^{2}}
$$

thus for $x \in[0,1)$, we always have $g^{\prime}(x)>0$, with equality only when $x=0$. Together with the fundamental theorem of calculus, this implies that g is strictly increasing on $[0,1)$. Since $f(0)=0$ and $\lim _{x \rightarrow 1} f(x)=\infty, f:[0,1) \rightarrow[0, \infty)$ is bijective.

