Problems marked with a $\left(^{*}\right)$ are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems/subquestions marked with (\bigcirc).
8.1. BONUS PROBLEM. Let $X \subset \mathbb{R}$ be a Jordan-null set (as in Definition 13.8).
(a) Show rigorously that $X \times X \subset \mathbb{R}^{2}$ is also Jordan-null.
(b) Show rigorously that $X \times[0,1] \subset \mathbb{R}^{2}$ is also Jordan-null.

8.2. True or False. (\odot)

1. A bounded countable set is always Jordan-null.
2. A countable set is always Lebesgue-null.
3. Let $D \subset[0,1]$ be a dense set (i.e., $\bar{D}=[0,1]$). Then $\mu_{\text {out }}(D)=1$. ($\mu_{\text {out }}$ was defined in Definition 13.7).
4. Let $X, Y \subset[0,1]$ Jordan measurable sets such that $\mu(X)>1 / 2$ and $\mu(Y)>1 / 2$. Then $X \cap Y \neq \emptyset$.
5. Let $X, Y \subset[0,1]$ such that $\mu_{\text {out }}(X)>1 / 2$ and $\mu_{\text {out }}(Y)>1 / 2$. Then $X \cap Y \neq \emptyset$.
8.3. Fat Boundary. Construct an open subset $U \subset \mathbb{R}$ for which the boundary ∂U is not a null set.
8.4. Multiple Choice. (() Let $U \subset \mathbb{R}^{n}$ be a nonempty, open subset, $f: U \rightarrow \mathbb{R}^{m}$ a function, and $N \subset U$ a Jordan null set. In which of the following cases is the image $f(N) \subset \mathbb{R}^{m}$ necessarily a null set? Attention: Only one answer is correct!
6. If f is uniformly continuous.
7. If f is uniformly continuous and $m \geq n$.
8. If f is locally Lipschitz continuous.
9. If f is locally Lipschitz continuous and $m \geq n$.
8.5. Change of variables and Jacobians. ($($) For each of the following domains and change of variables find the jacobian and the appropriate transformed domain. There is no need to actually compute the integrals!
10. $A:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}<x_{1}, 1<x_{1}^{2}+x_{2}^{2}<4\right\}$ and $x_{1}=r \cos \theta, x_{2}=r \sin \theta$. Using the change of variables formula, complete the dots in the following formula

$$
\int_{A} x_{1}^{2} \sin \left(x_{2}\right) d x_{1} d x_{2}=\int_{\ldots} \ldots d r d \theta
$$

2. $B:=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x y<2, x^{2}<y<2 x^{2}\right\}$ and $u:=x y, v:=x^{2}$. Using the change of variables formula, complete the dots in the following formula

$$
\int_{B} y^{2} e^{-x y} d x d y=\int_{\ldots} \ldots d u d v
$$

3. $C:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1<z-2 y<2,0<z<1,-2<3 x+y+z<0\right\}$ and $u:=z, v:=z-2 y, w:=3 x+y+z$. Using the change of variables formula, complete the dots in the following formula

$$
\int_{C} x y z d x d y=\int_{\ldots} \ldots d u d v d w .
$$

8.6. The Cantor set. $\left.{ }^{*}\right)$ Let $X \subset[0,1]$ be the set of all real numbers whose decimal expansion does not contain the digit 8. ${ }^{1}$ Show that:

1. X is a Lebesgue null set,
2. X is uncountable,
3. $X \times X \subset[0,1]^{2}$ is a Lebesgue null set.
4. Show that X is compact (it is important the choice made in the footnote!).
[^0]
Hints:

8.2.5 $\mu_{\text {out }}$ can be positive and large on very sparse sets...
8.3 Any open subset of \mathbb{R} is an union of disjoint open intervals. Try to achieve that U has a very small "total volume", but still contains all rational numbers in $[0,1]$.

[^0]: ${ }^{1}$ The decimal expansion is not always unique. For example, $0.8=0.79999 \ldots$. Whenever x has at least one decimal expansion not containing 8 , we rule that x belongs to X, so for example $0.3257 \overline{9} \in X$, $0.3258 \overline{9} \in X$

