Problems marked with a (*) are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems/subquestions marked with (\heartsuit).

8.1. BONUS PROBLEM. Let $X \subset \mathbb{R}$ be a Jordan-null set (as in Definition 13.8).

- (a) Show rigorously that $X \times X \subset \mathbb{R}^2$ is also Jordan-null.
- (b) Show rigorously that $X \times [0,1] \subset \mathbb{R}^2$ is also Jordan-null.

8.2. True or False. (\heartsuit)

- 1. A bounded countable set is always Jordan-null.
- 2. A countable set is always Lebesgue-null.
- 3. Let $D \subset [0,1]$ be a dense set (i.e., $\overline{D} = [0,1]$). Then $\mu_{out}(D) = 1$. (μ_{out} was defined in Definition 13.7).
- 4. Let $X, Y \subset [0, 1]$ Jordan measurable sets such that $\mu(X) > 1/2$ and $\mu(Y) > 1/2$. Then $X \cap Y \neq \emptyset$.
- 5. Let $X, Y \subset [0, 1]$ such that $\mu_{out}(X) > 1/2$ and $\mu_{out}(Y) > 1/2$. Then $X \cap Y \neq \emptyset$.

8.3. Fat Boundary. Construct an open subset $U \subset \mathbb{R}$ for which the boundary ∂U is not a null set.

8.4. Multiple Choice. (\heartsuit) Let $U \subset \mathbb{R}^n$ be a nonempty, open subset, $f: U \to \mathbb{R}^m$ a function, and $N \subset U$ a Jordan null set. In which of the following cases is the image $f(N) \subset \mathbb{R}^m$ necessarily a null set? Attention: Only one answer is correct!

- 1. If f is uniformly continuous.
- 2. If f is uniformly continuous and $m \ge n$.
- 3. If f is locally Lipschitz continuous.
- 4. If f is locally Lipschitz continuous and $m \ge n$.

8.5. Change of variables and Jacobians. (\heartsuit) For each of the following domains and change of variables find the jacobian and the appropriate transformed domain. There is no need to actually compute the integrals!

1. $A := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0, x_2 < x_1, 1 < x_1^2 + x_2^2 < 4\}$ and $x_1 = r \cos \theta, x_2 = r \sin \theta$. Using the change of variables formula, complete the dots in the following formula

$$\int_A x_1^2 \sin(x_2) \, dx_1 dx_2 = \int_{\cdots} \dots \, dr d\theta$$

2. $B := \{(x, y) \in \mathbb{R}^2 | 1 < xy < 2, x^2 < y < 2x^2\}$ and $u := xy, v := x^2$. Using the change of variables formula, complete the dots in the following formula

$$\int_{B} y^{2} e^{-xy} dx dy = \int_{\dots} \dots du dv$$

3. $C := \{(x, y, z) \in \mathbb{R}^3 | 1 < z - 2y < 2, 0 < z < 1, -2 < 3x + y + z < 0\}$ and u := z, v := z - 2y, w := 3x + y + z. Using the change of variables formula, complete the dots in the following formula

$$\int_C xyz \ dxdy = \int_{\dots} \dots dudvdw.$$

8.6. The Cantor set. (*) Let $X \subset [0, 1]$ be the set of all real numbers whose decimal expansion does not contain the digit 8.¹ Show that:

- 1. X is a Lebesgue null set,
- 2. X is uncountable,
- 3. $X \times X \subset [0,1]^2$ is a Lebesgue null set.
- 4. Show that X is compact (it is important the choice made in the footnote!).

¹The decimal expansion is not always unique. For example, 0.8 = 0.79999... Whenever x has at least one decimal expansion not containing 8, we rule that x **belongs to** X, so for example $0.3257\overline{9} \in X$, $0.3258\overline{9} \in X$

Hints:

- 8.2.5 μ_{out} can be positive and large on very sparse sets...
 - 8.3 Any open subset of \mathbb{R} is an union of disjoint open intervals. Try to achieve that U has a very small "total volume", but still contains all rational numbers in [0, 1].

8. Solutions

Solution of 8.1: For $\epsilon > 0$ there is a finite collection of dyadic intervals $\{I_1, \ldots, I_N\}$ such that

$$X \subset I_1 \cup \ldots \cup I_N, \quad \sum_{1 \le 1 \le N} \mu_1(I_i) \le \epsilon.$$

Now we must have

$$X \times [0,1] \subset I_1 \times [0,1] \cup \ldots \cup I_N \times [0,1],$$

and so

$$\mu_{out}(X \times [0,1]) \le \sum_{1 \le i \le N} \mu_2(I_i \times [0,1]) = \sum_{1 \le 1 \le N} \mu_1(I_i) \le \epsilon.$$

Since ϵ was arbitrary, $\mu_{out}(X \times [0, 1]) = 0$. Since without loss of generality we may have assumed that $X \subset [0, 1]$ then

$$\mu_{out}(X \times X) \le \mu_{out}(X \times [0, 1]) = 0.$$

Solution of 8.2:

- 1. False, \mathbb{Q} is a counterexample.
- 2. True, number it's elements $\{a_k\}_{k\in\mathbb{N}}$ and cover it with $\{a_k + \epsilon 2^{-k}[-1,1]\}_{k\in\mathbb{N}}$.
- 3. True, pick any finite dyadic partition of [0, 1]. Then each interval must contain at least one element of D by density. Hence if we want to cover D we must keep all these intervals, whose length sums to 1.
- 4. True. By contradiction, assume that $X \cap Y = \emptyset$. By Theorem 13.18, we must have $\mu(X \cup Y) = \mu(X) + \mu(Y) > 1$. On the other hand, since $X \cup Y \subseteq [0, 1]$, it holds $\mu(X \cup Y) \leq \mu([0, 1]) = 1$, which gives the desired contradiction.
- 5. False, take $X = \mathbb{Q} \cap [0, 1]$ and $Y := (\sqrt{2} + \mathbb{Q}) \cap [0, 1]$.

Solution of 8.3: Let $0 < \epsilon < 1/2$ and $(q_n)_{n \in \mathbb{N}}$ be a enumeration of $[0, 1] \cap \mathbb{Q}$. We define $I_n := (q_n - \epsilon 2^{-n}, q_n + \epsilon 2^{-n})$ and

$$U:=\bigcup_{n\in\mathbb{N}}I_n.$$

By construction, we then have $[0,1] \cap \mathbb{Q} \subset U$ and the "total volume"² is small, in the sense that

$$\sum_{n=1}^{\infty} \operatorname{vol}(I_n) = 2\epsilon \sum_{n=1}^{\infty} 2^{-n} = 2\epsilon.$$
(1)

We now show that this set U satisfies the requirements in the problem statement. Being a union of open intervals, U is certainly open in \mathbb{R} . Next, we notice that due to $[0,1] \cap \mathbb{Q} \subset U$,

 $^{^2 \}rm We$ always write this in quotation marks because the point of this exercise is that this set U is not Jordan-measurable.

the entire interval [0,1] is contained in the closure \overline{U} of U. Using the boundary of U, this can be written as

$$\partial U \cup U = (\overline{U} \setminus U) \cup U = \overline{U} \supset [0, 1].$$

In view of (1), it is therefore natural to conjecture that for a covering of ∂U by open boxes $(Q_l)_l$ in \mathbb{R} (that is, by intervals), it is necessary that

$$\sum_{l=1}^{\infty} \operatorname{vol}(Q_l) \ge 1 - 2\epsilon \tag{2}$$

must hold. To prove this lower bound, we first notice that for such a covering of the boundary

$$[0,1]\subset \partial U\cup U\subset \bigcup_{n\in\mathbb{N}}I_n\cup \bigcup_{l\in\mathbb{N}}Q_l$$

is an open covering of the compact interval [0, 1]. Therefore, finitely many of these sets suffice to cover it; thus, there exist $N, L \in \mathbb{N}$ such that

$$[0,1] \subset \bigcup_{n=1}^{N} I_n \cup \bigcup_{l=1}^{L} Q_l.$$

Both the I_n and the Q_l are open intervals, whose volume is computed as the difference of the right and left endpoints. Elementary considerations³ show that therefore for the volumes, it holds that

$$1 \le \sum_{n=1}^{N} \operatorname{vol}(I_n) + \sum_{l=1}^{L} \operatorname{vol}(Q_l).$$

From this, using (1), we now obtain

$$\sum_{l=1}^{\infty} \operatorname{vol}(Q_l) \ge \sum_{l=1}^{L} \operatorname{vol}(Q_l) \ge 1 - \sum_{n=1}^{N} \operatorname{vol}(I_n) \ge 1 - \sum_{n=1}^{\infty} \operatorname{vol}(I_n) = 1 - 2\epsilon,$$

exactly as in (2). Since ϵ was chosen such that $1 - 2\epsilon > 0$, this shows that ∂U cannot be a null set.

Solution of 8.4: The only correct one is number 4 which is Lemma 13.6.

Solution of 8.5:

³If an interval [a, b] is covered by finitely many intervals J_1, \ldots, J_r , ordered increasingly by their left endpoints, then the right endpoint of J_k is at most $a + \sum_{j=1}^k \operatorname{vol}(J_j)$. Therefore, for the right endpoint b to also lie in one of the intervals J_j , it must hold that $\sum_{j=1}^r \operatorname{vol}(J_j) \ge b - a$.

1. If $x_1 = r \cos \theta$, $x_2 = r \sin \theta$ then we have

$$(x_1, x_2) \in A \iff (r, \theta) \in \{-\pi < \theta < \pi, \sin \theta < \cos \theta, 1 < r < 2\}$$

solving the inequality

$$-\pi < \theta < \pi, \sin \theta < \cos \theta \iff -\pi < \theta < \pi/4.$$

So, recalling that the jacobian is r, we find

$$\int_{A} x_{1}^{2} \sin(x_{2}) dx_{1} dx_{2} = \int_{1}^{2} \Big\{ \int_{-\pi}^{\pi/4} \cos^{2}\theta \sin(r\sin\theta) d\theta \Big\} r^{3} dr.$$

2. Notice that $B \subset (0, \infty)^2$ so (x, y) are always positive and so are (u, v). We write the inverse mappings

$$x = \sqrt{v}, \quad y = \frac{u}{\sqrt{v}}.$$

So we compute the determinant of

$$\det \frac{\partial(x,y)}{\partial(u,v)} = \det \begin{bmatrix} 0 & \frac{1}{2\sqrt{v}} \\ \frac{1}{\sqrt{v}} & * \end{bmatrix}$$

and so we find

$$dx\,dy = \frac{du\,dv}{2v}.$$

The set B changes into

$$(x,y) \in B \iff (u,v) \in \{1 < u < 2, v\sqrt{v} < u < 2v\sqrt{v}\}, \\ \iff (u,v) \in \{1 < u < 2, u^{2/3} < v < 2^{-2/3}u^{2/3}\},$$

and the integrand $y^2 e^{-xy}$ changes into

$$\frac{u^2}{v}e^u$$

so summing up we find

$$\int_{B} y^{2} e^{-xy} dx dy = \int_{1}^{2} u^{2} \Big\{ \int_{u^{2/3}}^{2^{-2/3} u^{2/3}} v^{-2} e^{v} dv \Big\} du.$$

3. We compute the determinant

$$\det \frac{\partial(u, v, w)}{\partial(x, y, z)} = \det \begin{bmatrix} 0 & 0 & 1\\ 0 & -2 & 1\\ 3 & 1 & 1 \end{bmatrix} = 6,$$

so $dx dy dz = \frac{1}{6} du dv dw$. And the set becomes

 $(x, y, z) \in C \iff 0 < u < 1, \quad 1 < v < 2, \quad -2 < w < 0.$

To change variables in the function we need to compute the inverse mapping:

$$x = \frac{1}{3}w + \frac{1}{6}v - \frac{1}{2}u, \quad y = \frac{1}{2}u - \frac{1}{2}v, \quad z = u.$$

So we find

$$xyz = -\frac{1}{6}uvw + \frac{1}{6}u^2w + \frac{1}{3}u^2v - \frac{1}{12}uv^2 - \frac{1}{4}u^3.$$

So putting everything together

$$\int_C xyz \, dx \, dy \, dz = v \frac{1}{72} \int_0^1 \int_1^2 \int_{-2}^0 (-2uvw + 2u^2w + 4u^2v - uv^2 - 3u^3) du \, dv \, dw.$$

Solution of 8.6:

1. Let A_n be the set that does not contain 8 up to the *n*-th decimal place. For example,

$$A_1 = [0, 0.8] \cup [0.9, 1].$$

The intervals that decompose A_1 have total volume 0.9. The second set has form

$$A_2 = [0, 0.08] \cup [0.09, 0.18] \cup \cdots \cup [0.69, 0.78] \cup [0.79, 0.8] \cup [0.9, 0.98] \cup [0.99, 1].$$

The intervals that decompose A_2 have total volume $9 \cdot 0.09 = 0.81$ (there are a total of 11 intervals: 7 have length 0.09; and 4 intervals are shorter, but one finds 2 pairs of 2 intervals each, which together also have length 0.09). We try to find a pattern and consider A_3 . Treating the 4 shorter intervals in A_2 as if we had 2 intervals of length 0.09, we see that each interval in A_2 is divided into 9 intervals of length 0.009 (again by combining shorter intervals). Thus we have $vol(A_3) = 0.009 \cdot 81 = 0.9^3$.

Analogously, we find that A_n consists of finitely many intervals whose total volume

$$\operatorname{vol}(A_n) = 0.9\operatorname{vol}(A_{n-1})$$

which implies that $\operatorname{vol}(A_n) = 0.9^n$.

To show that X is a Lebesgue null set, let $\epsilon > 0$. Choose $n \in \mathbb{N}$ large enough such that $0.9^n < \epsilon$. Since A_n consists of finitely many intervals covering X and the sum of the lengths of these intervals is $0.9^n < \epsilon$, the claim follows. As a complement for those who prefer explicit formulas: Let $(I_n^k)_{k=1}^{s_n}$ be the intervals defining A_n . Then we have

$$X \subset A_n = \bigcup_{k=1}^{s_n} I_n^k$$
 and $\sum_{k=1}^{s_n} \operatorname{vol}(I_n) = 0.9^n < \epsilon.$

This shows that in fact X is also Jordan-null set.

2. If X were countable, we would write all numbers in a countably infinite list. As in the Cantor diagonal argument, we take a number defined by the diagonal and change each digit to a digit that is still not 8. This number is still in X, but does not coincide with any number in our list. Contradiction! So X is uncountable.

- 3. We can cover $X \times X$ by the boxes in $A_n \times [0, 1]$. We have $\operatorname{vol}(A_n \times [0, 1]) = \operatorname{vol}(A_n) = 0.9^n$ and the argument is analogous to part (a).
- 4. Each of the $\{A_i\}$ of step 1 is compact, being the union of finitely many closed disjoint intervals in [0, 1]. Our set by definition is

$$X := \bigcup_{i \ge 1} A_i,$$

which is closed (being an intersection of closed sets) and bounded (since A_1 is bounded). Hence X is compact.