Problems marked with a $\left(^{*}\right)$ are a bit more complex and can be skipped at a first read. If you don't have a lot of time focus on the Problems/subquestions marked with ( $\bigcirc$ ).
8.1. BONUS PROBLEM. Let $X \subset \mathbb{R}$ be a Jordan-null set (as in Definition 13.8).
(a) Show rigorously that $X \times X \subset \mathbb{R}^{2}$ is also Jordan-null.
(b) Show rigorously that $X \times[0,1] \subset \mathbb{R}^{2}$ is also Jordan-null.

### 8.2. True or False. ( $\odot$ )

1. A bounded countable set is always Jordan-null.
2. A countable set is always Lebesgue-null.
3. Let $D \subset[0,1]$ be a dense set (i.e., $\bar{D}=[0,1]$ ). Then $\mu_{\text {out }}(D)=1$. ( $\mu_{\text {out }}$ was defined in Definition 13.7).
4. Let $X, Y \subset[0,1]$ Jordan measurable sets such that $\mu(X)>1 / 2$ and $\mu(Y)>1 / 2$. Then $X \cap Y \neq \emptyset$.
5. Let $X, Y \subset[0,1]$ such that $\mu_{\text {out }}(X)>1 / 2$ and $\mu_{\text {out }}(Y)>1 / 2$. Then $X \cap Y \neq \emptyset$.
8.3. Fat Boundary. Construct an open subset $U \subset \mathbb{R}$ for which the boundary $\partial U$ is not a null set.
8.4. Multiple Choice. ( () Let $U \subset \mathbb{R}^{n}$ be a nonempty, open subset, $f: U \rightarrow \mathbb{R}^{m}$ a function, and $N \subset U$ a Jordan null set. In which of the following cases is the image $f(N) \subset \mathbb{R}^{m}$ necessarily a null set? Attention: Only one answer is correct!
6. If $f$ is uniformly continuous.
7. If $f$ is uniformly continuous and $m \geq n$.
8. If $f$ is locally Lipschitz continuous.
9. If $f$ is locally Lipschitz continuous and $m \geq n$.
8.5. Change of variables and Jacobians. ( $($ ) For each of the following domains and change of variables find the jacobian and the appropriate transformed domain. There is no need to actually compute the integrals!
10. $A:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}<x_{1}, 1<x_{1}^{2}+x_{2}^{2}<4\right\}$ and $x_{1}=r \cos \theta, x_{2}=r \sin \theta$. Using the change of variables formula, complete the dots in the following formula

$$
\int_{A} x_{1}^{2} \sin \left(x_{2}\right) d x_{1} d x_{2}=\int_{\ldots} \ldots d r d \theta
$$

2. $B:=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x y<2, x^{2}<y<2 x^{2}\right\}$ and $u:=x y, v:=x^{2}$. Using the change of variables formula, complete the dots in the following formula

$$
\int_{B} y^{2} e^{-x y} d x d y=\int_{\ldots} \ldots d u d v
$$

3. $C:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1<z-2 y<2,0<z<1,-2<3 x+y+z<0\right\}$ and $u:=z, v:=z-2 y, w:=3 x+y+z$. Using the change of variables formula, complete the dots in the following formula

$$
\int_{C} x y z d x d y=\int_{\ldots} \ldots d u d v d w .
$$

8.6. The Cantor set. $\left.{ }^{*}\right)$ Let $X \subset[0,1]$ be the set of all real numbers whose decimal expansion does not contain the digit 8. ${ }^{1}$ Show that:

1. $X$ is a Lebesgue null set,
2. $X$ is uncountable,
3. $X \times X \subset[0,1]^{2}$ is a Lebesgue null set.
4. Show that $X$ is compact (it is important the choice made in the footnote!).
[^0]
## Hints:

8.2.5 $\mu_{\text {out }}$ can be positive and large on very sparse sets...
8.3 Any open subset of $\mathbb{R}$ is an union of disjoint open intervals. Try to achieve that $U$ has a very small "total volume", but still contains all rational numbers in $[0,1]$.

## 8. Solutions

Solution of 8.1: For $\epsilon>0$ there is a finite collection of dyadic intervals $\left\{I_{1}, \ldots, I_{N}\right\}$ such that

$$
X \subset I_{1} \cup \ldots \cup I_{N}, \quad \sum_{1 \leq 1 \leq N} \mu_{1}\left(I_{i}\right) \leq \epsilon
$$

Now we must have

$$
X \times[0,1] \subset I_{1} \times[0,1] \cup \ldots \cup I_{N} \times[0,1]
$$

and so

$$
\mu_{\text {out }}(X \times[0,1]) \leq \sum_{1 \leq i \leq N} \mu_{2}\left(I_{i} \times[0,1]\right)=\sum_{1 \leq 1 \leq N} \mu_{1}\left(I_{i}\right) \leq \epsilon
$$

Since $\epsilon$ was arbitrary, $\mu_{\text {out }}(X \times[0,1])=0$. Since without loss of generality we may have assumed that $X \subset[0,1]$ then

$$
\mu_{\text {out }}(X \times X) \leq \mu_{\text {out }}(X \times[0,1])=0
$$

## Solution of 8.2:

1. False, $\mathbb{Q}$ is acounterexample.
2. True, number it's elements $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ and cover it with $\left\{a_{k}+\epsilon 2^{-k}[-1,1]\right\}_{k \in \mathbb{N}}$.
3. True, pick any finite dyadic partition of $[0,1]$. Then each interval must contain at least one element of $D$ by density. Hence if we want to cover $D$ we must keep all these intervals, whose length sums to 1 .
4. True. By contradiction, assume that $X \cap Y=\emptyset$. By Theorem 13.18, we must have $\mu(X \cup Y)=\mu(X)+\mu(Y)>1$. On the other hand, since $X \cup Y \subseteq[0,1]$, it holds $\mu(X \cup Y) \leq \mu([0,1])=1$, which gives the desired contradiction.
5. False, take $X=\mathbb{Q} \cap[0,1]$ and $Y:=(\sqrt{2}+\mathbb{Q}) \cap[0,1]$.

Solution of 8.3: Let $0<\epsilon<1 / 2$ and $\left(q_{n}\right)_{n \in \mathbb{N}}$ be a enumeration of $[0,1] \cap \mathbb{Q}$. We define $I_{n}:=\left(q_{n}-\epsilon 2^{-n}, q_{n}+\epsilon 2^{-n}\right)$ and

$$
U:=\bigcup_{n \in \mathbb{N}} I_{n} .
$$

By construction, we then have $[0,1] \cap \mathbb{Q} \subset U$ and the "total volume" ${ }^{2}$ is small, in the sense that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \operatorname{vol}\left(I_{n}\right)=2 \epsilon \sum_{n=1}^{\infty} 2^{-n}=2 \epsilon \tag{1}
\end{equation*}
$$

We now show that this set $U$ satisfies the requirements in the problem statement. Being a union of open intervals, $U$ is certainly open in $\mathbb{R}$. Next, we notice that due to $[0,1] \cap \mathbb{Q} \subset U$,

[^1]the entire interval $[0,1]$ is contained in the closure $\bar{U}$ of $U$. Using the boundary of $U$, this can be written as
$$
\partial U \cup U=(\bar{U} \backslash U) \cup U=\bar{U} \supset[0,1]
$$

In view of (1), it is therefore natural to conjecture that for a covering of $\partial U$ by open boxes $\left(Q_{l}\right)_{l}$ in $\mathbb{R}$ (that is, by intervals), it is necessary that

$$
\begin{equation*}
\sum_{l=1}^{\infty} \operatorname{vol}\left(Q_{l}\right) \geq 1-2 \epsilon \tag{2}
\end{equation*}
$$

must hold. To prove this lower bound, we first notice that for such a covering of the boundary

$$
[0,1] \subset \partial U \cup U \subset \bigcup_{n \in \mathbb{N}} I_{n} \cup \bigcup_{l \in \mathbb{N}} Q_{l}
$$

is an open covering of the compact interval $[0,1]$. Therefore, finitely many of these sets suffice to cover it; thus, there exist $N, L \in \mathbb{N}$ such that

$$
[0,1] \subset \bigcup_{n=1}^{N} I_{n} \cup \bigcup_{l=1}^{L} Q_{l} .
$$

Both the $I_{n}$ and the $Q_{l}$ are open intervals, whose volume is computed as the difference of the right and left endpoints. Elementary considerations ${ }^{3}$ show that therefore for the volumes, it holds that

$$
1 \leq \sum_{n=1}^{N} \operatorname{vol}\left(I_{n}\right)+\sum_{l=1}^{L} \operatorname{vol}\left(Q_{l}\right)
$$

From this, using (1), we now obtain

$$
\sum_{l=1}^{\infty} \operatorname{vol}\left(Q_{l}\right) \geq \sum_{l=1}^{L} \operatorname{vol}\left(Q_{l}\right) \geq 1-\sum_{n=1}^{N} \operatorname{vol}\left(I_{n}\right) \geq 1-\sum_{n=1}^{\infty} \operatorname{vol}\left(I_{n}\right)=1-2 \epsilon,
$$

exactly as in (2). Since $\epsilon$ was chosen such that $1-2 \epsilon>0$, this shows that $\partial U$ cannot be a null set.

Solution of 8.4: The only correct one is number 4 which is Lemma 13.6.

## Solution of 8.5:

[^2]1. If $x_{1}=r \cos \theta, x_{2}=r \sin \theta$ then we have

$$
\left(x_{1}, x_{2}\right) \in A \Longleftrightarrow(r, \theta) \in\{-\pi<\theta<\pi, \sin \theta<\cos \theta, 1<r<2\}
$$

solving the inequality

$$
-\pi<\theta<\pi, \sin \theta<\cos \theta \Longleftrightarrow-\pi<\theta<\pi / 4
$$

So, recalling that the jacobian is $r$, we find

$$
\int_{A} x_{1}^{2} \sin \left(x_{2}\right) d x_{1} d x_{2}=\int_{1}^{2}\left\{\int_{-\pi}^{\pi / 4} \cos ^{2} \theta \sin (r \sin \theta) d \theta\right\} r^{3} d r .
$$

2. Notice that $B \subset(0, \infty)^{2}$ so $(x, y)$ are always positive and so are $(u, v)$. We write the inverse mappings

$$
x=\sqrt{v}, \quad y=\frac{u}{\sqrt{v}} .
$$

So we compute the determinant of

$$
\operatorname{det} \frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{cc}
0 & \frac{1}{2 \sqrt{v}} \\
\frac{1}{\sqrt{v}} & *
\end{array}\right]
$$

and so we find

$$
d x d y=\frac{d u d v}{2 v}
$$

The set $B$ changes into

$$
\begin{aligned}
(x, y) \in B & \Longleftrightarrow(u, v) \in\{1<u<2, v \sqrt{v}<u<2 v \sqrt{v}\} \\
& \Longleftrightarrow(u, v) \in\left\{1<u<2, u^{2 / 3}<v<2^{-2 / 3} u^{2 / 3}\right\}
\end{aligned}
$$

and the integrand $y^{2} e^{-x y}$ changes into

$$
\frac{u^{2}}{v} e^{u}
$$

so summing up we find

$$
\int_{B} y^{2} e^{-x y} d x d y=\int_{1}^{2} u^{2}\left\{\int_{u^{2 / 3}}^{2^{-2 / 3} u^{2 / 3}} v^{-2} e^{v} d v\right\} d u
$$

3. We compute the determinant

$$
\operatorname{det} \frac{\partial(u, v, w)}{\partial(x, y, z)}=\operatorname{det}\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & 1 \\
3 & 1 & 1
\end{array}\right]=6
$$

so $d x d y d z=\frac{1}{6} d u d v d w$. And the set becomes

$$
(x, y, z) \in C \Longleftrightarrow 0<u<1, \quad 1<v<2, \quad-2<w<0
$$

To change variables in the function we need to compute the inverse mapping:

$$
x=\frac{1}{3} w+\frac{1}{6} v-\frac{1}{2} u, \quad y=\frac{1}{2} u-\frac{1}{2} v, \quad z=u .
$$

So we find

$$
x y z=-\frac{1}{6} u v w+\frac{1}{6} u^{2} w+\frac{1}{3} u^{2} v-\frac{1}{12} u v^{2}-\frac{1}{4} u^{3} .
$$

So putting everything together

$$
\int_{C} x y z d x d y d z=v \frac{1}{72} \int_{0}^{1} \int_{1}^{2} \int_{-2}^{0}\left(-2 u v w+2 u^{2} w+4 u^{2} v-u v^{2}-3 u^{3}\right) d u d v d w
$$

## Solution of 8.6:

1. Let $A_{n}$ be the set that does not contain 8 up to the $n$-th decimal place. For example,

$$
A_{1}=[0,0.8] \cup[0.9,1] .
$$

The intervals that decompose $A_{1}$ have total volume 0.9. The second set has form

$$
A_{2}=[0,0.08] \cup[0.09,0.18] \cup \cdots \cup[0.69,0.78] \cup[0.79,0.8] \cup[0.9,0.98] \cup[0.99,1] .
$$

The intervals that decompose $A_{2}$ have total volume $9 \cdot 0.09=0.81$ (there are a total of 11 intervals: 7 have length 0.09 ; and 4 intervals are shorter, but one finds 2 pairs of 2 intervals each, which together also have length 0.09 ). We try to find a pattern and consider $A_{3}$. Treating the 4 shorter intervals in $A_{2}$ as if we had 2 intervals of length 0.09 , we see that each interval in $A_{2}$ is divided into 9 intervals of length 0.009 (again by combining shorter intervals). Thus we have $\operatorname{vol}\left(A_{3}\right)=0.009 \cdot 81=0.9^{3}$.

Analogously, we find that $A_{n}$ consists of finitely many intervals whose total volume

$$
\operatorname{vol}\left(A_{n}\right)=0.9 \operatorname{vol}\left(A_{n-1}\right)
$$

which implies that $\operatorname{vol}\left(A_{n}\right)=0.9^{n}$.
To show that $X$ is a Lebesgue null set, let $\epsilon>0$. Choose $n \in \mathbb{N}$ large enough such that $0.9^{n}<\epsilon$. Since $A_{n}$ consists of finitely many intervals covering $X$ and the sum of the lengths of these intervals is $0.9^{n}<\epsilon$, the claim follows. As a complement for those who prefer explicit formulas: Let $\left(I_{n}^{k}\right)_{k=1}^{s_{n}}$ be the intervals defining $A_{n}$. Then we have

$$
X \subset A_{n}=\bigcup_{k=1}^{s_{n}} I_{n}^{k} \text { and } \sum_{k=1}^{s_{n}} \operatorname{vol}\left(I_{n}\right)=0.9^{n}<\epsilon .
$$

This shows that in fact $X$ is also Jordan-null set.
2. If $X$ were countable, we would write all numbers in a countably infinite list. As in the Cantor diagonal argument, we take a number defined by the diagonal and change each digit to a digit that is still not 8 . This number is still in $X$, but does not coincide with any number in our list. Contradiction! So $X$ is uncountable.
3. We can cover $X \times X$ by the boxes in $A_{n} \times[0,1]$. We have $\operatorname{vol}\left(A_{n} \times[0,1]\right)=\operatorname{vol}\left(A_{n}\right)=$ $0.9^{n}$ and the argument is analogous to part (a).
4. Each of the $\left\{A_{i}\right\}$ of step 1 is compact, being the union of finitely many closed disjoint intervals in $[0,1]$. Our set by definition is

$$
X:=\bigcup_{i \geq 1} A_{i},
$$

which is closed (being an intersection of closed sets) and bounded (since $A_{1}$ is bounded). Hence $X$ is compact.


[^0]:    ${ }^{1}$ The decimal expansion is not always unique. For example, $0.8=0.79999 \ldots$. Whenever $x$ has at least one decimal expansion not containing 8 , we rule that $x$ belongs to $X$, so for example $0.3257 \overline{9} \in X$, $0.3258 \overline{9} \in X$

[^1]:    ${ }^{2}$ We always write this in quotation marks because the point of this exercise is that this set $U$ is not Jordan-measurable.

[^2]:    ${ }^{3}$ If an interval $[a, b]$ is covered by finitely many intervals $J_{1}, \ldots, J_{r}$, ordered increasingly by their left endpoints, then the right endpoint of $J_{k}$ is at most $a+\sum_{j=1}^{k} \operatorname{vol}\left(J_{j}\right)$. Therefore, for the right endpoint $b$ to also lie in one of the intervals $J_{j}$, it must hold that $\sum_{j=1}^{r} \operatorname{vol}\left(J_{j}\right) \geq b-a$.

