9.1. BONUS PROBLEM. Calculate the volume of the region $B \subset \mathbb{R}^{3}$ enclosed by the surfaces $x^{2}+y^{2}+z^{2}=8$ and $2 z=x^{2}+y^{2}$. Hint: use cylindrical coordinates.

9.2. Multiple Integrals.

1. Let $D=[0,2] \times[0,1]$. Calculate

$$
\iint_{D}\left(x^{3}+3 x^{2} y+y^{3}\right) d x d y
$$

2. Let $D \subset \mathbb{R}^{2}$ be the interior of the triangle with vertices $(0,0),(0, \pi)$, and (π, π). Calculate

$$
\iint_{D} x \cos (x+y) d x d y .
$$

3. Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x>1, y>1, x+y<3\right\}$. Calculate

$$
\iint_{D} \frac{1}{(x+y)^{3}} d x d y
$$

9.3. Fubini Theorem. Compute the integrals

$$
\int_{0}^{\sqrt{\pi}} \int_{x}^{\sqrt{\pi}} \sin \left(y^{2}\right) d y d x, \quad \int_{-1}^{1} \int_{|y|}^{1}(x+y)^{2} d x d y
$$

9.4. Counterexample to Fubini. Let $f:[0, \infty)^{2} \rightarrow \mathbb{R}$, defined by

$$
f(x)= \begin{cases}e^{y-x} & x>y \geq 0 \\ -e^{x-y}, & 0 \leq x \leq y\end{cases}
$$

Compute the iterated integrals:

$$
\int_{0}^{\infty}\left\{\int_{0}^{\infty} f(x, y) d x\right\} d y, \quad \int_{0}^{\infty}\left\{\int_{0}^{\infty} f(x, y) d y\right\} d x
$$

and show that they have different values. Explain why this does not contradict Fubini's Theorem.
9.5. Volume of the cone over a set. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded measurable set, $n \geq 1$. Consider the "cone over Ω "

$$
C \Omega:=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: 0 \leq t \leq 1, x \in(1-t) \Omega\right\}
$$

Using Fubini theorem and homogeneity of μ_{n} show that

$$
\mu_{n+1}(C \Omega)=\frac{\mu_{n}(\Omega)}{n+1}
$$

Use this result to compute the n-volume of the n-simplex:

$$
\mu_{n}\left(T_{n}\right):=\mu_{n}\left(\left\{a_{1} e_{1}+\ldots+a_{n} e_{n}: 0 \leq a_{i} \leq 1, a_{1}+\ldots+a_{n} \leq 1\right\}\right)=\frac{1}{n!}
$$

where e_{1}, \ldots, e_{n} denotes an orthonormal frame of \mathbb{R}^{n}. Hint: show $(n+1) T_{n+1}=T_{n}$.
9.6. Gaussian integrals. Let $n \in \mathbb{N}$ and $A \in \operatorname{Mat}_{n, n}(\mathbb{R})$ be a symmetric positive definite matrix. Show that

$$
\int_{\mathbb{R}^{n}} e^{-\langle A x, x\rangle} d x=\frac{\pi^{n / 2}}{\sqrt{\operatorname{det}(A)}},
$$

Hint: start with the case where A is a diagonal matrix then use the Spectral theorem for the general case. You can use also that $\int_{\mathbb{R}} \exp \left(-x^{2}\right) d x=\sqrt{\pi}$.
9.7. Layer-cake formula. (*) Let $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a continuous function which vanish identically outside a compact set, and let $p \geq 1$. Using Fubini's Theorem show the Layer-cake formula

$$
\int_{\mathbb{R}} f(x)^{p} d x=p \int_{0}^{\infty} t^{p-1} \mu_{n}\left(\left\{x \in \mathbb{R}^{n}: f(x)>t\right\}\right) d t
$$

Find a similar formula for the integral of

$$
\int_{\mathbb{R}} \Phi(f(x)) d x=\int_{0}^{\infty} \quad \ldots \quad \mu_{n}\left(\left\{x \in \mathbb{R}^{n}: f(x)>t\right\}\right) d t
$$

where $\Phi \in C^{1}(\mathbb{R})$ is any function such that $\Phi(0)=0$. Hint: $f(x)=\int_{0}^{f(x)} d t$.

9. Solutions

Solution of 9.1: Let $B:=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 8, x^{2}+y^{2}-2 z \leq 0\right\}$. We calculate

$$
\operatorname{vol}(B)=\int_{B} d \mathrm{vol}
$$

We use cylindrical coordinates. With $\rho=r^{2}$ (so that $d \rho=2 r d r$), it holds:
$\operatorname{vol}(B)=\int_{B} r d r d z d \phi=\frac{1}{2} \int_{\left\{\frac{1}{2} \rho<z<\sqrt{8-\rho}\right\}} d \rho d z d \phi=\int_{0}^{2 \pi} \int_{0}^{4} \sqrt{8-\rho}-\frac{1}{2} \rho d \rho d \phi=\frac{4}{3}(8 \sqrt{2}-7) \pi$

Solution of 9.2:

1. We use Fubini's theorem:

$$
\begin{aligned}
\int_{D}\left(x^{3}+3 x^{2} y+y^{3}\right) \operatorname{dvol}(x, y) & =\int_{0}^{2} \int_{0}^{1}\left(x^{3}+3 x^{2} y+y^{3}\right) d y d x \\
& =\int_{0}^{2}\left(x^{3}+\frac{3}{2} x^{2}+\frac{1}{4}\right) d x=\frac{17}{2}
\end{aligned}
$$

2. We have $D=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<\pi, x<y<\pi\right\}$ and with Fubini's theorem we get:

$$
\begin{aligned}
\int_{D} x \cos (x+y) \operatorname{dvol}(x, y) & =\int_{0}^{\pi} \int_{x}^{\pi} x \cos (x+y) d y d x \\
& =\int_{0}^{\pi}[x \sin (x+y)]_{y=x}^{\pi} d x \\
& =-\int_{0}^{\pi} x(\sin x+\sin (2 x)) d x \\
& =\left[x\left(\cos x+\frac{1}{2} \cos (2 x)\right)\right]_{0}^{\pi}-\int_{0}^{\pi}\left(\cos x+\frac{1}{2} \cos (2 x)\right) d x \\
& =-\frac{\pi}{2}
\end{aligned}
$$

where we used integration by parts.
3. We have $D=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x<2,1<y<3-x\right\}$ and with Fubini's theorem we get:

$$
\begin{aligned}
\int_{D} \frac{1}{(x+y)^{3}} \operatorname{dvol}(x, y) & =\int_{1}^{2} \int_{1}^{3-x} \frac{1}{(x+y)^{3}} d y d x \\
& =-\frac{1}{2} \int_{1}^{2}\left[\frac{1}{(x+y)^{2}}\right]_{y=1}^{3-x} d x \\
& =-\frac{1}{2} \int_{1}^{2}\left(\frac{1}{9}-\frac{1}{(x+1)^{2}}\right) d x \\
& =-\frac{1}{18}+\frac{1}{2} \int_{2}^{3} \frac{1}{x^{2}} d x=\frac{1}{36}
\end{aligned}
$$

Solution of 9.3: Since the primitive of $\sin \left(y^{2}\right)$ is not easy to compute, we use Fubini Theorem to swap the integrals (a similar trick was used in Example 13.42)

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} \int_{x}^{\sqrt{\pi}} \sin \left(y^{2}\right) d y d x & =\int_{0}^{\sqrt{\pi}} \int_{0}^{y} \sin \left(y^{2}\right) d x d y \\
& =\int_{0}^{\sqrt{\pi}} y \sin \left(y^{2}\right) d y=-\left.\frac{1}{2} \cos \left(y^{2}\right)\right|_{0} ^{\sqrt{\pi}}=1
\end{aligned}
$$

Similarly:

$$
\int_{-1}^{1} \int_{|y|}^{1}(x+y)^{2} d x d y=\int_{0}^{1} \int_{-x}^{x}(x+y)^{2} d y d x=\frac{8}{3} \int_{0}^{1} x^{3} d x=\frac{2}{3} .
$$

Solution of 9.4: We compute

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) d x d y & =\int_{0}^{\infty}\left(\int_{y}^{\infty} e^{y-x} d x+\int_{0}^{y}-e^{x-y} d x\right) d y= \\
& =\int_{0}^{\infty}\left(1-1+e^{-y}\right) d y=\int_{0}^{\infty} e^{-y} d y=1
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} f(x, y) d y d x & =\int_{0}^{\infty}\left(\int_{0}^{x} e^{y-x} d x+\int_{x}^{\infty}-e^{x-y} d y\right) d x= \\
& =\int_{0}^{\infty}\left(1-e^{-x}-1\right) d x=\int_{0}^{\infty}-e^{-x} d x=-1
\end{aligned}
$$

Solution of 9.5: Since $\Omega \subset[-C, C]^{n}$ we have that also $C \Omega$ is bounded:

$$
(x, t) \in C \Omega \Longrightarrow 0 \leq t \leq 1, x \in[-C, C]^{n}
$$

We write our set using indicator functions, try to write it as a product

$$
\mathbf{1}_{C \Omega}(x, t)=\mathbf{1}_{[0,1]}(t) \cdot \mathbf{1}_{(1-t) \Omega}(x)=\mathbf{1}_{[0,1]}(t) \cdot \mathbf{1}_{\Omega}(x /(1-t)),
$$

we use this factorisation to apply Fubini and the change of variables $x=(1-t) y$,

$$
\begin{aligned}
\mu_{n+1}(C \Omega) & =\int_{\mathbb{R}^{n+1}} \mathbf{1}_{C \Omega} d x d t=\int_{\mathbb{R}}\left\{\int_{\mathbb{R}^{n}} \mathbf{1}_{[0,1]}(t) \cdot \mathbf{1}_{\Omega}(x /(1-t)) d x\right\} d t \\
& =\int_{\mathbb{R}} \mathbf{1}_{[0,1]}(t)(1-t)^{n}\left\{\int_{\mathbb{R}^{n}} \mathbf{1}_{\Omega}(y) d y\right\} d t \\
& =\mu_{n}(\Omega) \int_{0}^{1}(1-t)^{n} d t=\mu_{n}(\Omega) \int_{0}^{1} s^{n} d s=\frac{\mu_{n}(\Omega)}{n+1} .
\end{aligned}
$$

Clearly $T_{1}=[0,1] \subset \mathbb{R}$ and $\mu_{1}\left(T_{1}\right)=1$. We claim that

$$
T_{n+1}=C T_{n},
$$

from which the formula follows recursively:

$$
\mu_{n+1}\left(T_{n+1}\right)=\mu_{n+1}\left(C T_{n}\right)=\frac{\mu_{n}\left(T_{n}\right)}{n+1}=\frac{\mu_{n}\left(C T_{n-1}\right)}{n+1}=\frac{\mu_{n-1}\left(T_{n-1}\right)}{(n+1) n}=\ldots=\frac{\mu_{1}\left(T_{1}\right)}{(n+1)!}
$$

We check the claim: Let $0 \leq a_{i} \leq 1$ for $i=1, \ldots, n+1$ and $x=a_{1} e_{1}+\ldots+a_{n+1} e_{n+1}$, then

$$
\begin{aligned}
x \in T_{n+1} & \Longleftrightarrow a_{1}+\ldots+a_{n+1} \leq 1 \Longleftrightarrow \frac{a_{1}+\ldots+a_{n}}{1-a_{n+1}} \leq 1 \\
& \Longleftrightarrow \frac{a_{1}}{1-a_{n+1}} e_{1}+\ldots+\frac{a_{n}}{1-a_{n+1}} e_{n} \in T_{n} \\
& \Longleftrightarrow\left(a_{1} e_{1}+\ldots+a_{n} e_{n}, a_{n+1}\right) \in C T_{n} \Longleftrightarrow x \in C T_{n} .
\end{aligned}
$$

Solution of 9.6: According to the spectral Theorem, we can write A as $A=K D K^{-1}$ for an orthogonal matrix $K \in \mathrm{O}_{n}(\mathbb{R})$ and a diagonal matrix

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right) \in \operatorname{Mat}_{n, n}(\mathbb{R})
$$

with $\lambda_{i}>0$ for $1 \leq i \leq n$. Due to $K^{t}=K^{-1}$ and $|\operatorname{det}(K)|=1$, it follows from the substitution rule

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-\langle A x, x\rangle} \operatorname{dvol}(x)=\int_{\mathbb{R}^{n}} e^{-\left\langle D K^{-1} x, K^{-1} x\right\rangle} \operatorname{dvol}(x)=\int_{\mathbb{R}^{n}} e^{-\langle D x, x\rangle} \operatorname{dvol}(x), \tag{1}
\end{equation*}
$$

provided one of these improper integrals exists. Let $\left(B_{m}\right)_{m}$ be the exhaustion of \mathbb{R}^{n} consisting of the closed cubes $B_{m}=[-m, m]^{n} \subset \mathbb{R}^{n}$. Then, $x \mapsto e^{-\langle D x, x\rangle}$ is Riemann integrable as a continuous function over each of the sets B_{m}, and by Fubini's theorem, we have

$$
\begin{equation*}
\int_{B_{m}} e^{-\langle D x, x\rangle} \operatorname{dvol}(x)=\int_{B_{m}} e^{-\lambda_{1} x_{1}^{2}-\cdots-\lambda_{n} x_{n}^{2}} \operatorname{dvol}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \int_{-m}^{m} e^{-\lambda_{i} x^{2}} \mathrm{~d} x . \tag{2}
\end{equation*}
$$

By the substitution $u=\sqrt{\lambda_{i}} x$, we find for the latter integrals, considering Example 13.69,

$$
\lim _{m \rightarrow \infty} \int_{-m}^{m} e^{-\lambda_{i} x^{2}} \mathrm{~d} x=\frac{1}{\sqrt{\lambda_{i}}} \lim _{m \rightarrow \infty} \int_{-\sqrt{\lambda_{i}} m}^{\sqrt{\lambda_{i}} m} e^{-u^{2}} \mathrm{~d} u=\frac{\sqrt{\pi}}{\sqrt{\lambda_{i}}}
$$

Since $\prod_{i=1}^{n} \lambda_{i}=\operatorname{det}(D)=\operatorname{det}(A)$, it follows from (2) that

$$
\lim _{m \rightarrow \infty} \int_{B_{m}} e^{-\langle D x, x\rangle} \operatorname{dvol}(x)=\frac{\pi^{n / 2}}{\sqrt{\operatorname{det}(A)}}
$$

Theorem 13.74 now states that $x \mapsto e^{-\langle D x, x\rangle}$ is improperly integrable over \mathbb{R}^{n}, and together with (1), we conclude the desired result

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-\langle A x, x\rangle} \operatorname{dvol}(x) & =\int_{\mathbb{R}^{n}} e^{-\langle D x, x\rangle} \operatorname{dvol}(x)=\lim _{m \rightarrow \infty} \int_{B_{m}} e^{-\langle D x, x\rangle} \operatorname{dvol}(x) \\
& =\frac{\pi^{n / 2}}{\sqrt{\operatorname{det}(A)}} .
\end{aligned}
$$

Solution of 9.7: We directly prove the general case, notice that:

$$
\Phi(f(x))=\int_{0}^{f(x)} \Phi^{\prime}(t) d t=\int_{\mathbb{R}} \mathbf{1}_{[0, f(x)]}(t) \Phi^{\prime}(t) d t, \quad \text { for all } x \in \mathbb{R}^{n}
$$

We integrate this identity over \mathbb{R}^{n} and use Fubini, to this end we reshuffle the domain noticing that

$$
\mathbf{1}_{[0, f(x)]}(t)=\mathbf{1}_{[0, \infty)}(t) \cdot \mathbf{1}_{[0, \infty)}(f(x)-t)=\mathbf{1}_{[0, \infty)}(t) \cdot \mathbf{1}_{[t, \infty)}(f(x))
$$

obtaining

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \Phi(f(x)) d x & =\int_{\mathbb{R}^{n}}\left\{\int_{\mathbb{R}} \mathbf{1}_{[0, f(x)]}(t) \Phi^{\prime}(t) d t\right\} d x \\
& =\int_{\mathbb{R}^{n}}\left\{\int_{\mathbb{R}} \mathbf{1}_{[0, \infty)}(t) \cdot \mathbf{1}_{[t, \infty)}(f(x)) \Phi^{\prime}(t) d t\right\} d x \\
& =\int_{\mathbb{R}}\left\{\int_{\mathbb{R}^{n}} \mathbf{1}_{[0, \infty)}(t) \cdot \mathbf{1}_{[t, \infty)}(f(x)) \Phi^{\prime}(t) d x\right\} d t \\
& =\int_{0}^{\infty} \Phi^{\prime}(t)\left\{\int_{\mathbb{R}^{n}} \mathbf{1}_{[t, \infty)}(f(x)) d x\right\} d t \\
& =\int_{0}^{\infty} \Phi^{\prime}(t) \mu_{n}(\{f(x) \geq t\}) d x d t .
\end{aligned}
$$

The first formula follows setting $\Phi(t):=t^{p}$.

