## Exercise sheet 0

1. Let $K$ be a field, $\mathcal{I}$ be a set of indices and for every $i \in \mathcal{I}$ let $K_{i} \subset K$ be a subfield. Show that $\bigcap_{i \in \mathcal{I}} K_{i}$ is a subfield of $K$.
2. Decide which of the following quotient rings are isomorphic to each other:
(a) $\quad R_{1}:=\mathbb{R}[X, Y] /\left(X^{2}\right)$
(b) $\quad R_{2}:=\mathbb{R}[X, Y, Z] /(X, Y)$
(c) $\quad R_{3}:=\mathbb{R}[X, Y, Z] /\left(Y^{2}, X+Z\right)$
(d) $\quad R_{4}:=\mathbb{R}[X, Y] /(X+Y)$
(e) $\quad R_{5}:=\mathbb{R}[X, Y, Z] /(X Y)$
(f) $\quad R_{6}:=\mathbb{R}[X, Y, Z] /(X Y+2 X+Y+2)$
3. Let $R$ be a commutative ring and let $\varphi: R \hookrightarrow \mathbb{Z}$ be a surjective ring homomorphism. Prove that the following statements are true or give a counter-example:
(a) image $(\varphi)$ is a prime ideal in $\mathbb{Z}$.
(b) For $\mathfrak{s}$ a prime ideal in $\mathbb{Z}, \varphi^{-1}(\mathfrak{s})$ is also a prime ideal in $R$.
(c) For $\mathfrak{r}$ a prime ideal in $R$ with $\operatorname{ker}(\varphi) \subseteq \mathfrak{r}, \varphi(\mathfrak{r})$ is also a prime ideal in $\mathbb{Z}$.
4. Show that any finite integral domain is a field.
5. Let $R$ and $S$ be rings with 1 and $\varphi: R \rightarrow S$ be a nonzero map which satisfies $\varphi(a+b)=$ $\varphi(a)+\varphi(b)$ and $\varphi(a b)=\varphi(a) \varphi(b), \forall a, b \in R$. Show that if $\varphi\left(1_{R}\right) \neq 1_{S}$ then $\varphi\left(1_{R}\right)$ is a zero divisor. Hence if $S$ has no zero divisors then $\varphi\left(1_{R}\right)=1_{S}$.
6. Let $\varphi: R \rightarrow Q$ be a surjective ring homomorphism. Prove that there is a one-to-one correspondence between the ideals of $Q$ and the ideals of $R$ that contain $\operatorname{ker}(\varphi)$.
