- **1**. Let K be a field, \mathcal{I} be a set of indices and for every $i \in \mathcal{I}$ let $K_i \subset K$ be a subfield. Show that $\bigcap_{i \in \mathcal{I}} K_i$ is a subfield of K.
- 2. Decide which of the following quotient rings are isomorphic to each other:
 - (a) $R_1 := \mathbb{R}[X, Y]/(X^2)$
 - (b) $R_2 := \mathbb{R}[X, Y, Z]/(X, Y)$
 - (c) $R_3 := \mathbb{R}[X, Y, Z]/(Y^2, X + Z)$
 - (d) $R_4 := \mathbb{R}[X, Y]/(X + Y)$
 - (e) $R_5 := \mathbb{R}[X, Y, Z]/(XY)$
 - (f) $R_6 := \mathbb{R}[X, Y, Z]/(XY + 2X + Y + 2)$
- **3**. Let *R* be a commutative ring and let $\varphi : R \hookrightarrow \mathbb{Z}$ be a surjective ring homomorphism. Prove that the following statements are true or give a counter-example:
 - (a) $\operatorname{image}(\varphi)$ is a prime ideal in \mathbb{Z} .
 - (b) For \mathfrak{s} a prime ideal in \mathbb{Z} , $\varphi^{-1}(\mathfrak{s})$ is also a prime ideal in R.
 - (c) For \mathfrak{r} a prime ideal in R with $\ker(\varphi) \subseteq \mathfrak{r}, \varphi(\mathfrak{r})$ is also a prime ideal in \mathbb{Z} .
- 4. Show that any finite integral domain is a field.
- 5. Let R and S be rings with 1 and $\varphi : R \to S$ be a nonzero map which satisfies $\varphi(a + b) = \varphi(a) + \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$, $\forall a, b \in R$. Show that if $\varphi(1_R) \neq 1_S$ then $\varphi(1_R)$ is a zero divisor. Hence if S has no zero divisors then $\varphi(1_R) = 1_S$.
- 6. Let $\varphi : R \to Q$ be a surjective ring homomorphism. Prove that there is a one-to-one correspondence between the ideals of Q and the ideals of R that contain ker (φ) .