Exercise sheet 1

- **1**. Let R be a principal ideal domain.
 - (a) Show that every ascending chain of ideals, $I_1 \subseteq I_2 \subseteq \cdots$, eventually become stationary. Or in other words, there is a positive index n such that $I_k = I_n$ for all $k \ge n$.
 - (b) Show that every irreducible element is a prime element.
- 2. Show that every principal ideal domain is a unique factorization domain.
- **3**. Consider the ring $R := \mathbb{Z}[i] \subset \mathbb{C}$ with the so called *field norm*

$$N \colon R \to \mathbb{Z}_{\geq 0}, \ a + bi \mapsto (a + bi)(a - bi) = a^2 + b^2.$$

- (a) Prove that R is a Euclidean ring with respect to N.
- (b) Determine gcd(3-i, 3+i) and gcd(2-i, 2+i) in R.
- (c) Write 3 + i as a product of prime elements from R.
- (d) Prove that each prime element of R divides exactly one prime number $p \in \mathbb{Z}$.
- (e) Prove that each prime number $p \equiv 3 \pmod{4}$ is a prime element of R.
- 4. (a) Let R be a ring with unique factorization. Prove: if $a, b, c \in R$ are nonzero, $ab = c^n$ and a and b are relatively prime then there are units $u, v \in R$ as well as elements $a', b' \in R$, such that $a = ua'^n$ and $b = vb'^n$.
 - (b) There are counterexamples to the conclusion of (a) if we drop the the hypothesis that R has unique factorization. Use $R = \mathbb{Z}[\sqrt{-26}]$ to give such a counterexample.