## Exercise sheet 10

1. Let $L: K$ be a finite Galois extension. Take $x \in L$ and assume that the elements $\sigma(x)$ are all distinct for $\sigma \in \operatorname{Gal}(L: K)$. Show: $L=K(x)$.
2. For $p$ an odd prime number, let $\zeta:=e^{2 \pi i / p}$. Denote by $C_{i}$ a cyclic group of order $i$.
(a) Show: $[\mathbb{Q}(\zeta): \mathbb{Q}]=p-1$. (Hint: Use Eisenstein criterion.)
(b) Show: $\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q}) \cong C_{p-1}$.
3. Let $L_{f}$ be the splitting field of $f=X^{5}-1$ over $\mathbb{Q}$.
(a) Determine $\operatorname{Gal}\left(L_{f}: \mathbb{Q}\right)$.
(b) Determine all intermediate bodies $M$ with $\mathbb{Q} \subsetneq M \subsetneq L_{f}$.
(c) Let $\zeta:=e^{\frac{2 \pi i}{5}}$. Determine the minimum polynomial of $\zeta+\zeta^{4}$ over $\mathbb{Q}$.
4. For $n \geqslant 3$ let $\zeta \in \mathbb{C}$ be the primitive $n$-th root of unity. Prove:

$$
\mathbb{Q}(\zeta) \cap \mathbb{R}=\mathbb{Q}\left(\zeta+\zeta^{-1}\right)
$$

and determine the degree $\left[\mathbb{Q}(\zeta): \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right]$.
5. Let $K$ be a field, where the characteristic of $K$ is not 2 and let $f(x) \in K[x]$, such that the zeros of $f$ in a splitting field are $\alpha_{1}, \ldots, \alpha_{n}$. Let

$$
\delta=\prod_{1 \leqslant i<j \leqslant n}\left(\alpha_{i}-\alpha_{j}\right) .
$$

The discriminant $\Delta(f)$ of $f$ is defined as

$$
\Delta(f)=\delta^{2}
$$

Prove:
(a) $\Delta(f) \in K$.
(b) $\Delta(f)=0$ if and only if it has a multiple zero.
(c) If $\Delta(f) \neq 0$, then $\Delta(f)$ is a perfect square in $K$ if and only if the Galois group of $f$, interpreted as a group of permutations of the zeros of $f$, is contained in the alternating group $A_{n}$.

