Exercise sheet 11

1. The Sylvester matrix of two polynomials $f(X):=\sum_{i=0}^{m} a_{i} X^{i}$ and $g(X):=\sum_{j=0}^{n} a_{j} X^{j}$ over a ring R is given by the $(m+n) \times(m+n)$ matrix

$$
\operatorname{Sylv}_{f, g}:=\left(\begin{array}{ccccccccc}
a_{m} & \ldots & \ldots & \ldots & a_{1} & a_{0} & 0 & \ldots & 0 \\
0 & a_{m} & \ldots & \ldots & \ldots & a_{1} & a_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & & & & \ddots & \ddots & 0 \\
0 & \ldots & 0 & a_{m} & \ldots & \ldots & \ldots & a_{1} & a_{0} \\
b_{n} & \ldots & \ldots & b_{1} & b_{0} & 0 & \ldots & \ldots & 0 \\
0 & b_{n} & \ldots & \ldots & b_{1} & b_{0} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & & & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & & & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & b_{n} & \ldots & \ldots & b_{1} & b_{0}
\end{array}\right) .
$$

The determinant of the Sylvester matrix is called the resultant of f and g and is denoted by $\operatorname{Res}_{f, g} \in R$.
(a) Compute the resultant of the polynomials $X^{3}-X+1$ and $X^{2}+X+3$.
(b) For two arbitrary polynomials f, g over a ring R prove that

$$
\operatorname{Res}_{g, f}=(-1)^{m n} \operatorname{Res}_{f, g}
$$

(c) For K a field, let $f, g \in K[X]$ be two polynomials. Prove: the resultant of f and g is equal to zero if and only if the two polynomials have a common root.
(d) For polynomials $f(X)=a_{m} \prod_{i=1}^{m}\left(X-\alpha_{i}\right)$ and $g(X)=b_{n} \prod_{j=1}^{n}\left(X-\beta_{j}\right)$ prove:

$$
\operatorname{Res}_{f, g}=a_{m}^{n} \cdot b_{n}^{m} \cdot \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)
$$

(e) Let $f(X)=a_{0}+a_{1} X+\cdots+a_{m-1} X^{m-1}+X^{m}$ be a polynomial over a ring R. Let $\Delta(f)$ denote its discriminant (see exercise sheet 10). Show that

$$
\Delta(f)=(-1)^{\frac{m(m-1)}{2}} \operatorname{Res}_{f, f^{\prime}},
$$

where f^{\prime} denotes the derivative of f.
(f) Determine a general formula for the discriminant of an arbitrary polynomial of degree 2,3 and 4 .
2. Let n be a positive integer, and $P \in \mathbb{Z}[X]$ a monic irreducible factor of $X^{n}-1 \in \mathbb{Q}[X]$. Suppose that ζ is a root of P.
(a) Show that for each $k \in \mathbb{Z}_{\geqslant 0}$ there exists a unique polynomial $R_{k} \in \mathbb{Z}[X]$ such that $\operatorname{deg}\left(R_{k}\right)<\operatorname{deg}(P)$ and $P\left(\zeta^{k}\right)=R_{k}(\zeta)$. Prove that $\left\{R_{k} \mid k \in \mathbb{Z}_{\geqslant 0}\right\}$ is a finite set. We define

$$
a:=\sup \left\{|u|: u \text { is a coefficient of some } R_{k}\right\}
$$

(b) Show that for $k=p$ a prime, p divides all coefficients of R_{p}, and that when $p>a$ one has $R_{p}=0\left(\right.$ Hint: $\left.P\left(\zeta^{p}\right)=P\left(\zeta^{p}\right)-P(\zeta)^{p}\right)$.
(c) Deduce that if all primes dividing some positive integer m are strictly greater then a, then $P\left(\zeta^{m}\right)=0$.
(d) Prove that if r and n are coprime, then $P\left(\zeta^{r}\right)=0$ (Hint: Consider the quantity $m=$ $\left.r+n \prod_{p \leqslant a, p \nmid r} p\right)$.
(e) Recall the definition of n-th cyclotomic polynomial Φ_{n} for $n \in \mathbb{Z}_{>0}$: we take $W_{n} \subseteq \mathbb{C}$ to be the set of primitive n-th roots of unity, and define

$$
\Phi_{n}(X):=\prod_{x \in W_{n}}(X-x) .
$$

Prove the following equality for $n \in \mathbb{Z}_{>0}$:

$$
\prod_{0<d \mid n} \Phi_{d}(X)=X^{n}-1
$$

and deduce that $\Phi_{n} \in \mathbb{Z}[X]$ for every n.
(f) Prove that the n-th cyclotomic polynomial is irreducible. (Hint: Take $\zeta:=\exp (2 \pi i / n)$ and P its minimal polynomial over \mathbb{Q}. Check that P satisfies the required hypothesis to deduce that $\Phi_{n}(X) \mid P$ (using parts (a)-(d)). Then irreducibility of P together with part (e) allow you to conclude.)
3. Let L be a splitting field of the polynomial $X^{6}-5$ over Q. Determine all intermediate fields of $L: \mathbb{Q}$ together with their inclusions.

