Review exercise sheet

1. Show that $X^{4}+1 \in \mathbb{Q}[X]$ is irreducible. Show that $X^{4}+1$ is reducible in $\mathbb{F}_{p}[X]$ for every prime p.
2. For the polynomial $X^{4}+2 X^{3}+X^{2}+2 X+1 \in \mathbb{Q}[X]$ determine the Galois group of its splitting field over \mathbb{Q}.
3. Let $p>2$ be a prime number and $\zeta:=e^{\frac{2 \pi i}{p}}$. Let $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E: \mathbb{Q}) \cong$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(a) Show that there exists a unique subgroup H of $\operatorname{Gal}(\mathbb{Q}(\zeta): \mathbb{Q})$ of order 2. What is its generator? [Hint: It is an element of order 2]
(b) Prove that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \subseteq E^{H}$ and that $\left[E: \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right] \leqslant 2$.
(c) Deduce that $E^{H}=\mathrm{Q}\left(\zeta+\zeta^{-1}\right)$.
4. Let $E: k$ be a finite Galois extension with Galois group $G=\operatorname{Gal}(E: k)$ of degree $n=[E$: $k]$. Define the trace $T: E \longrightarrow E$ by

$$
T(x)=\sum_{\sigma \in G} \sigma(x) .
$$

(a) Prove that $\operatorname{im}(T) \subseteq k$ and that T is k-linear.
(b) Show that T is not identically zero and deduce that $\operatorname{dim}(\operatorname{ker}(T))=n-1$.
(c) Now suppose that $\operatorname{Gal}(E: k)$ is cyclic and generated by an automorphism σ. Consider the linear map $\tau=\sigma-\mathrm{id}_{E}$. Prove that

$$
\operatorname{ker}(T)=\operatorname{im}(\tau)=\{\sigma(u)-u: u \in E\}
$$

5. Let p be an odd prime number. Let $\zeta=e^{\frac{2 \pi i}{p}} \in \mathbb{C}$ and $E=\mathbb{Q}(\zeta)$. Recall that $\operatorname{Gal}(E: \mathbb{Q}) \cong$ \mathbb{F}_{p}^{\times}. For $a \in \mathbb{F}_{p}^{\times}$, define the Legendre symbol

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a square in } \mathbb{F}_{p}^{\times} \\ -1 & \text { if } a \text { is a not square in } \mathbb{F}_{p}^{\times} .\end{cases}
$$

Define the complex number

$$
\tau=\sum_{a \in \mathbb{F}_{p}^{\times}}\left(\frac{a}{p}\right) \zeta^{a} .
$$

(a) Show that the map $\mathbb{F}_{p}^{\times} \rightarrow\{ \pm 1\}$ sending $a \mapsto\left(\frac{a}{p}\right)$ is a group homomorphism.
(b) Prove that

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

and that this determines $\left(\frac{a}{p}\right) \in\{ \pm 1\}$ uniquely.
(c) Show that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$.
(d) For $b \in \mathbb{F}_{p}^{\times}$, let $\sigma_{b} \in \operatorname{Gal}(E: \mathbb{Q})$ be the automorphism $\sigma_{b}(\zeta)=\zeta^{b}$. Prove the equality $\sigma_{b}(\tau)=\left(\frac{b}{p}\right) \cdot \tau$.
(e) Prove that $\mathbb{Q}(\tau): \mathbb{Q}$ is the unique quadratic intermediate extension of $E: \mathbb{Q}$.

We now want to determine the extension $\mathbb{Q}(\tau)$ by computing τ^{2} explicitly.
(f) Let $c \in \mathbb{F}_{p}^{\times}$. Show that

$$
\sum_{a \in \mathbb{F}_{p}^{\times}} \zeta^{a(1+c)}= \begin{cases}-1 & \text { if } c \neq p-1 \\ p-1 & \text { if } c=p-1\end{cases}
$$

(g) Write

$$
\tau^{2}=\sum_{a \in \mathbb{F}_{p}^{\times}} \sum_{b \in \mathbb{F}_{p}^{\times}}\left(\frac{a b}{p}\right) \zeta^{a+b}
$$

Substituting $b=a c$ with $c \in \mathbb{F}_{p}^{\times}$, deduce that

$$
\tau^{2}=-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)+\left(\frac{-1}{p}\right)(p-1) .
$$

(h) Conclude: if $p \equiv 1(\bmod 4)$, then $\mathbb{Q}(\tau)=\mathbb{Q}(\sqrt{p})$; if $p \equiv 3(\bmod 4)$, then $\mathbb{Q}(\tau)=$ $\mathrm{Q}(i \sqrt{p})$.
6. Let $L: K$ be a finite Galois extension with Galois group G. Let G^{\prime} denote the commutator subgroup $[G, G]$ generated by all commutators $x y x^{-1} y^{-1}$ in G. Show that $L^{G^{\prime}}: K$ is a Galois extension with $\operatorname{Gal}\left(L^{G^{\prime}}: K\right)$ abelian. Show that any Galois extension $E: K$ with $E \subset L$ and $\operatorname{Gal}(E: K)$ abelian is contained in $L^{G^{\prime}}$.
7. For all ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ and all elements x, y of a ring R show the formulas
(a) $(x)(y)=(x y)$
(b) $\mathfrak{a}(\mathfrak{b} \mathfrak{c})=(\mathfrak{a b}) \mathfrak{c}$
(c) $(x) \cdot((y) \cdot \mathfrak{a})=(x y) \cdot \mathfrak{a}$
8. Decide which of the following ideals of $\mathbb{Q}[X, Y, Z]$ are equal:

$$
\begin{array}{ll}
I_{1}:=(X, Y) & I_{5}:=(X Z, X-Y, X+Y) \\
I_{2}:=(X, Y, Z) & I_{6}:=\left(X^{2}+Y^{2}, Z-Y^{2}, Z-X^{2}\right) \\
I_{3}:=\left(X^{2}, Y^{2}, Z\right) & I_{7}:=\left(X Z, Y^{2}-5 X^{2}, X^{2}-X Z\right) \\
I_{4}:=\left(X Z, X^{2}, Y^{2}\right) &
\end{array}
$$

9. For $\omega=e^{\frac{2 \pi i}{3}}$ consider the ring $R:=\mathbb{Z}[\omega] \subset \mathbb{C}$ with the field norm

$$
N: R \rightarrow \mathbb{Z}_{\geqslant 0}, a+b \omega \mapsto a^{2}-a b+b^{2} .
$$

(a) Show that the field norm N is multiplicative.
(b) Prove that R is a Euclidean ring with respect to N.
(c) Determine the group of units R^{\times}. [Hint: Use part (b).]
(d) Write $5+\omega$ as a product of prime elements from R.
(e) Prove that each prime element of R divides exactly one prime number $p \in \mathbb{Z}$.

