Review exercise sheet

- **1.** Show that $X^4 + 1 \in \mathbb{Q}[X]$ is irreducible. Show that $X^4 + 1$ is reducible in $\mathbb{F}_p[X]$ for every prime p.
- **2**. For the polynomial $X^4 + 2X^3 + X^2 + 2X + 1 \in \mathbb{Q}[X]$ determine the Galois group of its splitting field over \mathbb{Q} .
- 3. Let p>2 be a prime number and $\zeta:=e^{\frac{2\pi i}{p}}.$ Let $E=\mathbb{Q}(\zeta).$ Recall that $\mathrm{Gal}(E:\mathbb{Q})\cong (\mathbb{Z}/p\mathbb{Z})^{\times}.$
 - (a) Show that there exists a unique subgroup H of $Gal(\mathbb{Q}(\zeta) : \mathbb{Q})$ of order 2. What is its generator? [*Hint*: It is an element of order 2]
 - (b) Prove that $\mathbb{Q}(\zeta + \zeta^{-1}) \subseteq E^H$ and that $[E : \mathbb{Q}(\zeta + \zeta^{-1})] \le 2$.
 - (c) Deduce that $E^H = \mathbb{Q}(\zeta + \zeta^{-1})$.
- **4.** Let E:k be a finite Galois extension with Galois group $G=\operatorname{Gal}(E:k)$ of degree n=[E:k]. Define the $\operatorname{trace} T:E\longrightarrow E$ by

$$T(x) = \sum_{\sigma \in G} \sigma(x).$$

- (a) Prove that $im(T) \subseteq k$ and that T is k-linear.
- (b) Show that T is not identically zero and deduce that $\dim(\ker(T)) = n 1$.
- (c) Now suppose that $\operatorname{Gal}(E:k)$ is cyclic and generated by an automorphism σ . Consider the linear map $\tau = \sigma \operatorname{id}_E$. Prove that

$$\ker(T) = \operatorname{im}(\tau) = \{\sigma(u) - u : u \in E\}.$$

5. Let p be an odd prime number. Let $\zeta = e^{\frac{2\pi i}{p}} \in \mathbb{C}$ and $E = \mathbb{Q}(\zeta)$. Recall that $\mathrm{Gal}(E:\mathbb{Q}) \cong \mathbb{F}_p^{\times}$. For $a \in \mathbb{F}_p^{\times}$, define the *Legendre symbol*

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } a \text{ is a square in } \mathbb{F}_p^{\times} \\ -1 & \text{if } a \text{ is a not square in } \mathbb{F}_p^{\times}. \end{cases}$$

Define the complex number

$$\tau = \sum_{a \in \mathbb{F}_p^{\times}} \left(\frac{a}{p}\right) \zeta^a.$$

- (a) Show that the map $\mathbb{F}_p^{\times} \to \{\pm 1\}$ sending $a \mapsto \left(\frac{a}{p}\right)$ is a group homomorphism.
- (b) Prove that

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p},$$

and that this determines $\left(\frac{a}{p}\right) \in \{\pm 1\}$ uniquely.

- (c) Show that $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$.
- (d) For $b \in \mathbb{F}_p^{\times}$, let $\sigma_b \in \operatorname{Gal}(E : \mathbb{Q})$ be the automorphism $\sigma_b(\zeta) = \zeta^b$. Prove the equality $\sigma_b(\tau) = \left(\frac{b}{p}\right) \cdot \tau$.
- (e) Prove that $\mathbb{Q}(\tau):\mathbb{Q}$ is the unique quadratic intermediate extension of $E:\mathbb{Q}$.

We now want to determine the extension $\mathbb{Q}(\tau)$ by computing τ^2 explicitly.

(f) Let $c \in \mathbb{F}_p^{\times}$. Show that

$$\sum_{a \in \mathbb{F}_p^\times} \zeta^{a(1+c)} = \left\{ \begin{array}{ll} -1 & \text{if } c \neq p-1 \\ p-1 & \text{if } c = p-1 \end{array} \right.$$

(g) Write

$$\tau^2 = \sum_{a \in \mathbb{F}_p^{\times}} \sum_{b \in \mathbb{F}_p^{\times}} \left(\frac{ab}{p} \right) \zeta^{a+b}.$$

Substituting b=ac with $c\in\mathbb{F}_p^{\times}$, deduce that

$$\tau^2 = -\sum_{c=1}^{p-2} \left(\frac{c}{p}\right) + \left(\frac{-1}{p}\right) (p-1).$$

- (h) Conclude: if $p \equiv 1 \pmod 4$, then $\mathbb{Q}(\tau) = \mathbb{Q}(\sqrt{p})$; if $p \equiv 3 \pmod 4$, then $\mathbb{Q}(\tau) = \mathbb{Q}(i\sqrt{p})$.
- **6**. Let L:K be a finite Galois extension with Galois group G. Let G' denote the commutator subgroup [G,G] generated by all commutators $xyx^{-1}y^{-1}$ in G. Show that $L^{G'}:K$ is a Galois extension with $\operatorname{Gal}(L^{G'}:K)$ abelian. Show that any Galois extension E:K with $E\subset L$ and $\operatorname{Gal}(E:K)$ abelian is contained in $L^{G'}$.

2

- 7. For all ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}$ and all elements x, y of a ring R show the formulas
 - (a) (x)(y) = (xy)
 - (b) $\mathfrak{a}(\mathfrak{bc}) = (\mathfrak{ab})\mathfrak{c}$
 - (c) $(x) \cdot ((y) \cdot \mathfrak{a}) = (xy) \cdot \mathfrak{a}$

8. Decide which of the following ideals of $\mathbb{Q}[X, Y, Z]$ are equal:

$$I_1 := (X,Y)$$
 $I_5 := (XZ,X-Y,X+Y)$
 $I_2 := (X,Y,Z)$ $I_6 := (X^2+Y^2,Z-Y^2,Z-X^2)$
 $I_3 := (X^2,Y^2,Z)$ $I_7 := (XZ,Y^2-5X^2,X^2-XZ)$
 $I_4 := (XZ,X^2,Y^2)$

9. For $\omega = e^{\frac{2\pi i}{3}}$ consider the ring $R := \mathbb{Z}[\omega] \subset \mathbb{C}$ with the *field norm*

$$N: R \to \mathbb{Z}_{\geq 0}, \ a + b\omega \mapsto a^2 - ab + b^2.$$

- (a) Show that the field norm N is multiplicative.
- (b) Prove that R is a Euclidean ring with respect to N.
- (c) Determine the group of units R^{\times} . [Hint: Use part (b).]
- (d) Write $5 + \omega$ as a product of prime elements from R.
- (e) Prove that each prime element of R divides exactly one prime number $p \in \mathbb{Z}$.