Exercise sheet 2

1. Decide whether the following polynomials are irreducible in $\mathbb{Q}[X]$.
(a) $X^{3}-3 X^{2}-8$
(b) $2 X^{10}-25 X^{3}+10 X+30$
(c) $2 X^{3}+X^{2}+2 X+2$
(d) $X^{4}+X^{2}+1$
2. Consider the ring $R=\mathbb{Z}[X] /\left(X^{2}+5\right)$.
(a) Show that R is an integral domain.
(b) Show that R is not a unique factorization domain.
3. Consider the ring $R:=\mathbb{Z}[\sqrt{-2}]$.
(a) Show that R is a Euclidean domain with the norm function

$$
N: R \rightarrow \mathbb{Z}_{\geqslant 0}, a+b \sqrt{-2} \mapsto a^{2}+2 b^{2} .
$$

(b) Show that the norm N is multiplicative and hence if $r \mid s$ in $\mathbb{Z}[\sqrt{-2}]$, then $N(r)$ divides $N(s)$.
(c) Show that the only units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1.
4. The goal of this exercise is to show that the only integral solutions of the diophantine equation $y^{2}=x^{3}-2$ are $(x, y)=(3,5)$ and $(3,-5)$.
(a) Show that if $x, y \in \mathbb{Z}$ satisfy $y^{2}=x^{3}-2$ then x is odd.
(b) Show that if $x, y \in \mathbb{Z}$ satisfy $y^{2}=x^{3}-2$ then $y+\sqrt{-2}$ and $y-\sqrt{-2}$ are relatively prime over $\mathbb{Z}[\sqrt{-2}]$
(c) Write $x^{3}=y^{2}+2=(y+\sqrt{-2})(y-\sqrt{-2})$ and use Exercise sheet 1, Question 4 (a) to write $(y+\sqrt{-2})=(a+b \sqrt{-2})^{3}$ and conclude that only solutions are $(x, y)=(3,5)$ and $(3,-5)$.

