- 1. Decide whether the following polynomials are irreducible in $\mathbb{Q}[X]$.
 - (a) $X^3 3X^2 8$
 - (b) $2X^{10} 25X^3 + 10X + 30$
 - (c) $2X^3 + X^2 + 2X + 2$
 - (d) $X^4 + X^2 + 1$
- 2. Consider the ring $R = \mathbb{Z}[X]/(X^2 + 5)$.
 - (a) Show that R is an integral domain.
 - (b) Show that R is not a unique factorization domain.
- **3**. Consider the ring $R := \mathbb{Z}[\sqrt{-2}]$.
 - (a) Show that R is a Euclidean domain with the norm function

$$N \colon R \to \mathbb{Z}_{\geq 0}, \ a + b\sqrt{-2} \mapsto a^2 + 2b^2.$$

- (b) Show that the norm N is multiplicative and hence if $r \mid s$ in $\mathbb{Z}[\sqrt{-2}]$, then N(r) divides N(s).
- (c) Show that the only units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1 .
- 4. The goal of this exercise is to show that the only integral solutions of the diophantine equation $y^2 = x^3 2$ are (x, y) = (3, 5) and (3, -5).
 - (a) Show that if $x, y \in \mathbb{Z}$ satisfy $y^2 = x^3 2$ then x is odd.
 - (b) Show that if $x, y \in \mathbb{Z}$ satisfy $y^2 = x^3 2$ then $y + \sqrt{-2}$ and $y \sqrt{-2}$ are relatively prime over $\mathbb{Z}[\sqrt{-2}]$
 - (c) Write $x^3 = y^2 + 2 = (y + \sqrt{-2})(y \sqrt{-2})$ and use Exercise sheet 1, Question 4 (a) to write $(y + \sqrt{-2}) = (a + b\sqrt{-2})^3$ and conclude that only solutions are (x, y) = (3, 5) and (3, -5).