Exercise sheet 3

- 1. (a) Let f and g be polynomials over a field F. Show that f and g are relatively prime if and only if f and g have no common root in any extention of F.
 - (b) If $f, g \in F[x]$ are distinct monic irreducible polynomials then show that they have no common roots in any extention of F.
- **2**. Let $\overline{\mathbb{Q}} := \{ \alpha \in \mathbb{C} \mid \alpha \text{ is algebraic over } \mathbb{Q} \}$, the set of all algebraic numbers over \mathbb{Q} .
 - (a) Show that $\overline{\mathbb{Q}}$ is a field.
 - (b) Show that $\overline{\mathbb{Q}} : \mathbb{Q}$ is an infinite extention
- 3. Let $\mathbb{A} = \mathbb{R} \cap \overline{\mathbb{Q}}$. Show that \mathbb{A} is countable, and conclude that there are real numbers which are transcendental.
- 4. Let L : K be an algebraic field extension. Let K_1, K_2 be two fields with $K \subseteq K_1, K_2 \subseteq L$, such that the field extensions $K_1 : K$ and $K_2 : K$ are finite. The composite of K_1 and K_2 is defined as $K_1K_2 := K(K_1 \cup K_2)$. Show:
 - (a) $[K_1K_2:K_2] \leq [K_1:K]$
 - (b) $[K_1K_2:K] \leq [K_1:K] \cdot [K_2:K]$
 - (c) If $gcd([K_1:K], [K_2:K]) = 1$, then equality holds in (b).

Remark: If equality holds in (b), K_1 and K_2 are said to be *linearly disjoint* over K.