Prof. Dr. Özlem Imamoglu

Exercise sheet 3

1. (a) Let f and g be polynomials over a field F. Show that f and g are relatively prime if and only if f and g have no common root in any extention of F.
(b) If $f, g \in F[x]$ are distinct monic irreducible polynomials then show that they have no common roots in any extention of F.
2. Let $\overline{\mathbb{Q}}:=\{\alpha \in \mathbb{C} \mid \alpha$ is algebraic over $\mathbb{Q}\}$, the set of all algebraic numbers over \mathbb{Q}.
(a) Show that $\overline{\mathrm{Q}}$ is a field.
(b) Show that $\overline{\mathrm{Q}}: \mathbb{Q}$ is an infinite extention
3. Let $\mathbb{A}=\mathbb{R} \bigcap \overline{\mathbb{Q}}$. Show that \mathbb{A} is countable, and conclude that there are real numbers which are transcendental.
4. Let $L: K$ be an algebraic field extension. Let K_{1}, K_{2} be two fields with $K \subseteq K_{1}, K_{2} \subseteq L$, such that the field extensions $K_{1}: K$ and $K_{2}: K$ are finite. The composite of K_{1} and K_{2} is defined as $K_{1} K_{2}:=K\left(K_{1} \cup K_{2}\right)$. Show:
(a) $\left[K_{1} K_{2}: K_{2}\right] \leqslant\left[K_{1}: K\right]$
(b) $\left[K_{1} K_{2}: K\right] \leqslant\left[K_{1}: K\right] \cdot\left[K_{2}: K\right]$
(c) If $\operatorname{gcd}\left(\left[K_{1}: K\right],\left[K_{2}: K\right]\right)=1$, then equality holds in (b).

Remark: If equality holds in (b), K_{1} and K_{2} are said to be linearly disjoint over K.

