Exercise sheet 4

- 1. Let $F \subset K \subset L$ be fields. Show that L : F is an algebraic extention if and only if L : K and K : F are algebraic.
- 2. Let L : K be an algebraic field extention. Prove that every subring R of L which contains K is a field. Give a counter example in the case that the extention is not algebraic.
- 3. (a) Let F be a field and $a \in \overline{\mathbb{Q}}$ that generates a field extention of F of degree 7. Prove that a^2 generated the same extention.
 - (b) Prove that part **3**.a holds for 7 replaced by any odd integer.
- 4. Let p and q are two distinct primes. Prove that $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ are isomorphic as vector spaces over \mathbb{Q} but not as fields.
- 5. Let $x = \sqrt{2} + \sqrt[3]{3}$.
 - (a) Prove that $\mathbb{Q}(x) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. [*Hint:* Find the minimal polynomial of $x \sqrt{2}$ and expand]
 - (b) Compute the minimal polynomial of x over $\mathbb{Q}(\sqrt{2})$. [*Hint*: $[\mathbb{Q}(x) : \mathbb{Q}(\sqrt{2})] = ?$]
 - (c) Compute the minimal polynomial of x over \mathbb{Q} .