Exercise sheet 6

- 1. Let K be a field of characteristic 0 and L : K a finite algebraic extention. Show that L : K is simple if and only if there are only finitely many intermediate fields.
- **2**. (a) Prove that if [K : k] = 2, then $k \subseteq K$ is a normal extention.
 - (b) Show that $\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}$ is normal.
 - (c) Show that $\mathbb{Q}(\sqrt[4]{2}(1+i)) : \mathbb{Q}$ is not normal over \mathbb{Q} .
 - (d) Deduce that given a tower L: K: k of field extentions, L: k needs not to be normal even if L: K and K: k are normal.
- **3**. (a) Let K be field containing \mathbb{Q} . Show that any automorphism of K is a \mathbb{Q} -automorphism.
 - (b) From now on, let $\sigma : \mathbb{R} \to \mathbb{R}$ be a field automorphism. Show that σ is increasing:

$$x \leqslant y \Longrightarrow \sigma(x) \leqslant \sigma(y).$$

- (c) Deduce that σ is continuous.
- (d) Deduce that $\sigma = \mathrm{Id}_{\mathbb{R}}$.
- 4. (a) Show that every finite field is isomorphic to $\mathbb{F}_p[x]/(f(x))$ for some prime p and some monic irreducinle polynomial f(x) in $\mathbb{F}_p[x]$.
 - (b) Show that each irreducible polynomial f(x) in $\mathbb{F}_p[x]$ of degree *n* divides $x^{p^n} x$ and is separable.
 - (c) Factor $x^8 x$ and $x^{16} x$ in $\mathbb{F}_2[x]$
- **5**. (a) Show that $(x^d 1)|(x^n 1)$ if and only if d|n
 - (b) Prove that a subfield F of \mathbb{F}_{p^n} has order p^d where d|n.
 - (c) Show that for each d|n there is one subfield F of \mathbb{F}_{p^n} of order p^d .