Exercise sheet 7

- **1**. Let L : K be a splitting field of a separable polynomial $f(x) \in K[x]$ of degree n. Show that if f is irreducible then n divides |Gal(L : K)|.
- 2. Let p be a prime and \mathbb{F}_{p^n} be the finite field of p^n elements. Show that $\operatorname{Gal}(\mathbb{F}_{p^n} : \mathbb{F}_p)$ is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ and a generator is given by the Frobenius homomorphism $\varphi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ where $\varphi(x) = x^p$.
- **3**. For $p^r = 8, 9, 16$ find the minimal polynomial over \mathbb{F}_p of a generator of $\mathbb{F}_{p^r}^{\times}$.
- 4. Let n be a positive integer. Let p be a prime number and let K be a finite field of order p^n . Prove:
 - (a) If p = 2, then each element of K is a square. (*Hint:* Consider the Frobenius homomorphism)
 - (b) Each element of K can be written as a sum of two squares.
 - (c) For p > 2, we have that -1 is a square in K if and only if $p^n \equiv 1 \pmod{4}$.
- 5. Let p > 2 be a prime number. Prove that p can be written as a sum of two squares in \mathbb{Z} if and only if $p \equiv 1 \pmod{4}$.

Hint: Look at the prime factorization of p in $\mathbb{Z}[i]$. See also Exercise sheet 1, question 3.