Prof. Dr. Özlem Imamoglu

Exercise sheet 7

1. Let $L: K$ be a splitting field of a separable polynomial $f(x) \in K[x]$ of degree n. Show that if f is irreducible then n divides $|\operatorname{Gal}(L: K)|$.
2. Let p be a prime and $\mathbb{F}_{p^{n}}$ be the finite field of p^{n} elements. Show that $\operatorname{Gal}\left(\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right)$ is isomorphic to $\mathbb{Z} / n \mathbb{Z}$ and a generator is given by the Frobenius $\operatorname{homomrphism} \varphi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ where $\varphi(x)=x^{p}$.
3. For $p^{r}=8,9,16$ find the minimal polynomial over \mathbb{F}_{p} of a generator of $\mathbb{F}_{p^{r}}^{\times}$.
4. Let n be a positive integer. Let p be a prime number and let K be a finite field of order p^{n}. Prove:
(a) If $p=2$, then each element of K is a square. (Hint: Consider the Frobenius homomorphism)
(b) Each element of K can be written as a sum of two squares.
(c) For $p>2$, we have that -1 is a square in K if and only if $p^{n} \equiv 1(\bmod 4)$.
5. Let $p>2$ be a prime number. Prove that p can be written as a sum of two squares in \mathbb{Z} if and only if $p \equiv 1(\bmod 4)$.

Hint: Look at the prime factorization of p in $\mathbb{Z}[i]$. See also Exercise sheet 1, question 3.

