D-MATH

Exercise sheet 8

1. Recall that a normal closure of an extention L : K is the smallest extention of L which is normal over K. Let L: K be a finite extention. Show that there exists a normal closure N of L: K which is a finite extention of K and that if M is another normal closure than the extentions M : K and N : K are isomorphic.

Hint: Let $\alpha_1, \ldots, \alpha_n$ be a basis of L over K with minimal polynomials $m_i = m_{\alpha_i, K}$ and consider the splitting field of the polynomial $m_1m_2...m_n$.

- 2. Let L : K be a finite extention. Show that the following are equivalent
 - (a) L: K is normal
 - (b) For every finite extention M of K containing L, every K-monomorphism $\varphi: L \to M$ is a *K*-automorphism of *L*.
 - (c) There exists a finite normal extention N of K containing L such that every every Kmonomorphism $\varphi: L \to N$ is a *K*-automorphism of *L*.
- 3. Let L : K be a separable, finite extention of degree n. Show that there are exactly n Kmonomorphisms of L into a normal closure N.
- **4**. Show that $x^4 + 1$ is irreducible in $\mathbb{Z}[x]$ but reducible in $\mathbb{F}_p[x]$ for every prime p.
- 5. Let L be the splitting field of the polynomial $x^4 + 1$ over Q and let $G = \text{Gal}(L : \mathbb{Q})$ be its Galois group. Determine G and the fixed fields corresponding to each of its subgroups.