Exercise sheet 9

 (a) Let p be a prime and f ∈ Q[x] an irreducible polynomial of degree p with splitting field L. Assume that f has exactly p - 2 real roots. Show that Gal(L : Q) ≃ S_p.
Hint: Make use of the following two facts from the theory of finite groups.

Hint: Make use of the following two facts from the theory of finite groups.

- i. (Cauchy) If G is a finite group and p is a prime with $p \mid |G|$ then G contains an element of order p.
- ii. A *p*-cycle $(a_1, a_2 \cdots a_n)$ with $\{a_1, \ldots, a_n\} = \{1, 2, \ldots, n\}$ and a transposition (a_i, a_j) where generate the group S_p .
- (b) Show that the Galois group of $x^5 4x + 2 \in \mathbb{Q}[x]$ is isomorphic to S_5
- 2. Let L : K be a finite separable extention. Use Galois theory to show that there are finitely many intermediate fields between L and K. Use Question 1 of Serie 6 to conclude that L : K is simple.
- **3**. Determine the Galois group of $x^6 8$ over \mathbb{Q} .
- 4. Let $f(X) \in \mathbb{Q}[X]$ be a non zero polynomial. Assume that the order of the Galois group of f(x) over \mathbb{Q} is odd. Prove that all zeros of f(x) are real.
- 5. Let L : K be a finite Galois extension with intermediate fields K_1 , K_2 and corresponding Galois groups $G_i := \text{Gal}(L : K_i) \leq G := \text{Gal}(L : K)$. Prove:
 - (a) $K_1 K_2 = L^{G_1 \cap G_2}$
 - (b) $K_1 \cap K_2 = L^{\langle G_1, G_2 \rangle}$, where $\langle G_1, G_2 \rangle$ is the subgroup of G generated by G_1 and G_2
 - (c) If $K_1K_2 = L$, $K_1 \cap K_2 = K$ and the extensions $K_1 : K$ and $K_2 : K$ are both Galois, then

$$\operatorname{Gal}(L:K) \cong G_1 \times G_2$$

Hint: If G is a group with two normal subgroups G_1 and G_2 such that $G_1 \cap G_2 = 1$, then $G_1G_2 \cong G_1 \times G_2$.