Single Choice 1

1. Which of the following statements is true?
(a) In any ring R, the zero ideal (0) is a prime ideal.
(b) Each principal ideal domain is an Euclidean domain.
(c) For all fields K and M, each ring homomorphism $K \rightarrow M$ is injective.
(d) For all fields K and M, each ring homomorphism $K \rightarrow M$ is surjective.
2. Which subring of \mathbb{C} is not equal to the others?
(a) $\mathbb{Z}\left[\frac{i}{20},-10 i\right]$
(b) $\mathbb{Z}\left[\frac{1}{2}, \frac{i}{5}\right]$
(c) $\mathbb{Z}\left[\frac{1}{2}, 10 i\right]$
(d) $\mathbb{Z}\left[\frac{i}{20}, \frac{10}{i}\right]$
3. $\mathrm{Q} \times \mathrm{Q} \times \mathrm{Q}$ is a group under componentwise addition. Consider the subgroup

$$
H:=\{h \cdot(1,2,3) \mid h \in \mathbb{Q}\} .
$$

Then $(\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}) / H$ is isomorphic to
(a) $\mathrm{Q} \times \mathrm{Q} \times \mathrm{Q}$
(b) $\mathrm{Q} \times \mathbb{Q}$
(c) Q
(d) $\{0\}$
4. Which of the following ideals in $\mathbb{Q}[X]$ is not a maximal ideal?
(a) $(X+1)$
(b) $\left(X^{2}+1\right)$
(c) $\left(X^{3}+1\right)$
(d) $\left(X^{4}+1\right)$
5. Let R^{*} be the group of units. Which of the following is true for each $x \in R^{*}$?
(a) $x+1 \in R^{*}$
(b) $x^{2} \in R^{*}$
(c) $\forall y \in R \exists z \in R: y \cdot z=x$
(d) All the statements above are true.

