- 1. Which of the following statements is true?
 - (a) In any ring R, the zero ideal (0) is a prime ideal.
 - (b) Each principal ideal domain is an Euclidean domain.
 - (c) For all fields K and M, each ring homomorphism $K \to M$ is injective.
 - (d) For all fields K and M, each ring homomorphism $K \to M$ is surjective.
- **2**. Which subring of \mathbb{C} is **not** equal to the others?
 - (a) $\mathbb{Z}[\frac{i}{20}, -10i]$
 - (b) $\mathbb{Z}[\frac{1}{2}, \frac{i}{5}]$
 - (c) $\mathbb{Z}[\frac{1}{2}, 10i]$
 - (d) $\mathbb{Z}\left[\frac{i}{20}, \frac{10}{i}\right]$
- 3. $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ is a group under componentwise addition. Consider the subgroup

$$H := \{ h \cdot (1, 2, 3) \mid h \in \mathbb{Q} \}.$$

Then $(\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q})/H$ is isomorphic to

- (a) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$
- (b) $\mathbb{Q} \times \mathbb{Q}$
- (c) Q
- (d) $\{0\}$
- **4**. Which of the following ideals in $\mathbb{Q}[X]$ is not a maximal ideal?
 - (a) (X+1)
 - (b) $(X^2 + 1)$
 - (c) $(X^3 + 1)$
 - (d) $(X^4 + 1)$

5. Let R^* be the group of units. Which of the following is true for each $x \in R^*$?

- (a) $x + 1 \in R^*$
- (b) $x^2 \in R^*$
- (c) $\forall y \in R \ \exists z \in R : y \cdot z = x$
- (d) All the statements above are true.