Single Choice 11

- 1. The Galois group of the splitting field of the polynomial $x^3 + x + 1$ over $\mathbb Q$ is isomorphic to...
 - (a) C_2
 - (b) C_6
 - (c) A_3
 - (d) S_3
- 2. The order of the Galois group of the splitting field of the polynomial $x^3 2x + 1$ over \mathbb{Q} is equal to...
 - (a) 2
 - (b) 3
 - (c) 6
 - (d) 9
- 3. Let $f(x) := x^3 12x + 34$. Let K be a splitting field of f over Q. Which of the following statements is **false**?
 - (a) f is irreducible over \mathbb{Q}
 - (b) $Gal(K : \mathbb{Q})$ contains an element of order 2
 - (c) f has precisely one real zero
 - (d) $Gal(K : \mathbb{Q}) \cong A_3$
- **4.** Let M be a Galois extension of K with $|\operatorname{Gal}(M:K)|=12$. Which of the following statements is **false**?
 - (a) There always exists a subfield L of M containing K with [L:K]=2.
 - (b) There always exists a subfield L of M containing K with [L:K]=3.
 - (c) There always exists a subfield L of M containing K with [L:K]=4.
 - (d) There always exists a subfield L of M containing K with [L:K] = 6.
- 5. Which of the following statements is **false**?
 - (a) Let K be a field, $f \in K[X]$ a polynomial, such that the discriminant of f is non-zero and a perfect square. Then the Galois group of f over K is contained in A_n for $n = \deg(f)$.
 - (b) If $K: \mathbb{Q}$ is a finite normal extension, then there exists an extension N of K such that every \mathbb{Q} -monomorphism $\varphi: K \to N$ is a \mathbb{Q} -automorphism of K.
 - (c) Every finite, separable and normal field extension is Galois.
 - (d) The 11-th cyclotomic polynomial is equal to $\sum_{k=0}^{10} x^k$.