Single Choice 12

1. Let K be the splitting field of $x^{49}-1$ over \mathbb{Q}. Then $[K: \mathbb{Q}]$ is equal to
(a) 7
(b) 42
(c) 48
(d) 49
2. Let $r \in \mathbb{Z}_{>1}$ and let $L: K$ be a Galois extension such that $\operatorname{Gal}(L: K)$ is cyclic of order 2^{r}. What is the number of the subfields M such that $K \subsetneq M \subsetneq L$?
(a) $r-1$
(b) r
(c) $r+1$
(d) $r+2$
3. Let K be the splitting field of $x^{42}-1$ over \mathbb{Q}. What is the number of the subfields M such that $\mathrm{Q} \subsetneq M \subsetneq K$?
(a) 3
(b) 4
(c) 6
(d) 8
4. Let $f \in \mathbb{Q}[X]$ be irreducible and let K denote its splitting field. If $\operatorname{Gal}(K: \mathbb{Q})=D_{4}$ (the dihedral group of order 8), what are the possibilities for the degree of f ?
(a) Only the degree 4 is possible.
(b) Only the degree 8 is possible.
(c) Only the degrees 4 and 8 are possible.
(d) The degrees 2, 4 and 8 are all possible.
5. Which of the following statements is false?
(a) There exists a primitive root of unity ζ such that $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta)$.
(b) Let $K: \mathbb{Q}$ be a finite normal extension. If $\operatorname{Gal}(K: \mathbb{Q})$ is solvable, then there exists an extension $L: K$ such that $L: \mathbb{Q}$ is radical.
(c) The Galois group of the polynomial $X^{4}+X^{2}+1$ over \mathbb{Q} is solvable.
(d) Each radical extension is normal.
