Algebra II

Single Choice 12

- **1**. Let K be the splitting field of $x^{49} 1$ over \mathbb{Q} . Then $[K : \mathbb{Q}]$ is equal to
 - (a) 7
 - (b) 42
 - (c) 48
 - (d) 49
- **2**. Let $r \in \mathbb{Z}_{>1}$ and let L : K be a Galois extension such that Gal(L : K) is cyclic of order 2^r . What is the number of the subfields M such that $K \subsetneq M \subsetneq L$?
 - (a) *r* − 1
 - (b) *r*
 - (c) r + 1
 - (d) r + 2
- **3**. Let *K* be the splitting field of $x^{42} 1$ over \mathbb{Q} . What is the number of the subfields *M* such that $\mathbb{Q} \subsetneq M \subsetneq K$?
 - (a) 3
 - (b) 4
 - (c) 6
 - (d) 8
- 4. Let $f \in \mathbb{Q}[X]$ be irreducible and let K denote its splitting field. If $Gal(K : \mathbb{Q}) = D_4$ (the dihedral group of order 8), what are the possibilities for the degree of f?
 - (a) Only the degree 4 is possible.
 - (b) Only the degree 8 is possible.
 - (c) Only the degrees 4 and 8 are possible.
 - (d) The degrees 2, 4 and 8 are all possible.
- 5. Which of the following statements is false?
 - (a) There exists a primitive root of unity ζ such that $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta)$.
 - (b) Let $K : \mathbb{Q}$ be a finite normal extension. If $Gal(K : \mathbb{Q})$ is solvable, then there exists an extension L : K such that $L : \mathbb{Q}$ is radical.
 - (c) The Galois group of the polynomial $X^4 + X^2 + 1$ over \mathbb{Q} is solvable.
 - (d) Each radical extension is normal.