Single Choice 13

1. Let R be a ring and M an R-module. For $n \in \mathbb{Z}_{\geqslant 1}$ and each $1 \leqslant i \leqslant n$ let M_{i} be a submodule of M. Which of the following statements is false?
(a) The sum $\sum_{i=1}^{n} M_{i}$ is a submodule of M.
(b) The direct sum $\oplus_{i=1}^{n} M_{i}$ is a submodule of M^{n}.
(c) The intersection $\bigcap_{i=1}^{n} M_{i}$ is a submodule of M.
(d) The union $\bigcup_{i=1}^{n} M_{i}$ is a submodule of M.
2. Let R be a ring. Which of the following statements is false?
(a) Each submodule of R is an ideal.
(b) Let $\mathfrak{a} \subset R$ be an ideal. Then \mathfrak{a} is a submodule of R.
(c) For each ideal $\mathfrak{a} \subset R, R / \mathfrak{a}$ is an R-module.
(d) Let M and N be two R-modules generated by a single element. Then $M \cong N$.
3. Let M and N be two \mathbb{Z}-modules. Which of the following statements is false?
(a) $\mathrm{A} \mathbb{Z}$-module homomorphism is an isomorphism if it is bijective.
(b) For each $M \rightarrow N$ surjective \mathbb{Z}-module homomorphism there exists a submodule \tilde{M} of M such that $M \cong N$.
(c) For each $M \rightarrow N$ surjective \mathbb{Z}-module homomorphism there exists a submodule \tilde{M} of M such that $M / \tilde{M} \cong N$.
(d) There exists a \mathbb{Z}-module homomorphism $M \rightarrow N$.
4. Let $R:=\mathbb{Z}[\sqrt{-5}]$. Let $\mathfrak{p}:=(3,1+\sqrt{-5})$ and $\mathfrak{q}:=(3,1-\sqrt{-5})$ be ideals of R. Which of the following statements is true?
(a) The ideals \mathfrak{p} and \mathfrak{q} are isomorphic as \mathbb{Z}-modules, but not as R-modules.
(b) The ideals \mathfrak{p} and \mathfrak{q} are isomorphic as R-modules, but not as \mathbb{Z}-modules.
(c) The ideals \mathfrak{p} and \mathfrak{q} are isomorphic as both R-modules and \mathbb{Z}-modules.
(d) The ideals \mathfrak{p} and \mathfrak{q} are not isomorphic as either R-modules or \mathbb{Z}-modules.
5. Consider the Q-module $M:=\mathbb{Q}^{2}$ as a $\mathbb{Q}[X]$-module such that scalar multiplication by X is given by left multiplication by the matrix $A:=\left(\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right)$. Which of the following $\mathbb{Q}[X]-$ isomorphisms holds?
(a) $M \cong \mathbb{Q}[X] /(X-9)$
(b) $M \cong \mathbb{Q}[X] /\left(X^{2}-9\right)$
(c) $M \cong \mathbb{Q}[X] /(X)$
(d) $M \cong \mathbb{Q}[X] /(X+3)^{2}$
