Single Choice 13

- **1**. Let *R* be a ring and *M* an *R*-module. For $n \in \mathbb{Z}_{\geq 1}$ and each $1 \leq i \leq n$ let M_i be a submodule of *M*. Which of the following statements is **false**?
 - (a) The sum $\sum_{i=1}^{n} M_i$ is a submodule of M.
 - (b) The direct sum $\bigoplus_{i=1}^{n} M_i$ is a submodule of M^n .
 - (c) The intersection $\bigcap_{i=1}^{n} M_i$ is a submodule of M.
 - (d) The union $\bigcup_{i=1}^{n} M_i$ is a submodule of M.
- **2**. Let R be a ring. Which of the following statements is **false**?
 - (a) Each submodule of R is an ideal.
 - (b) Let $\mathfrak{a} \subset R$ be an ideal. Then \mathfrak{a} is a submodule of R.
 - (c) For each ideal $\mathfrak{a} \subset R$, R/\mathfrak{a} is an R-module.
 - (d) Let M and N be two R-modules generated by a single element. Then $M \cong N$.
- **3**. Let M and N be two \mathbb{Z} -modules. Which of the following statements is **false**?
 - (a) A \mathbb{Z} -module homomorphism is an isomorphism if it is bijective.
 - (b) For each $M \twoheadrightarrow N$ surjective \mathbb{Z} -module homomorphism there exists a submodule \tilde{M} of M such that $\tilde{M} \cong N$.
 - (c) For each $M \twoheadrightarrow N$ surjective \mathbb{Z} -module homomorphism there exists a submodule \tilde{M} of M such that $M/\tilde{M} \cong N$.
 - (d) There exists a \mathbb{Z} -module homomorphism $M \to N$.
- 4. Let $R := \mathbb{Z}[\sqrt{-5}]$. Let $\mathfrak{p} := (3, 1 + \sqrt{-5})$ and $\mathfrak{q} := (3, 1 \sqrt{-5})$ be ideals of R. Which of the following statements is true?
 - (a) The ideals p and q are isomorphic as \mathbb{Z} -modules, but not as R-modules.
 - (b) The ideals p and q are isomorphic as *R*-modules, but not as \mathbb{Z} -modules.
 - (c) The ideals p and q are isomorphic as both *R*-modules and \mathbb{Z} -modules.
 - (d) The ideals p and q are not isomorphic as either *R*-modules or \mathbb{Z} -modules.
- 5. Consider the *Q*-module $M := \mathbb{Q}^2$ as a $\mathbb{Q}[X]$ -module such that scalar multiplication by *X* is given by left multiplication by the matrix $A := \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}$. Which of the following $\mathbb{Q}[X]$ -isomorphisms holds?
 - (a) $M \cong \mathbb{Q}[X]/(X-9)$
 - (b) $M \cong \mathbb{Q}[X]/(X^2 9)$
 - (c) $M \cong \mathbb{Q}[X]/(X)$
 - (d) $M \cong \mathbb{Q}[X]/(X+3)^2$