Review Multiple Choice

- 1. Consider the ring $R = \mathbb{Z}[i\sqrt{2}, \frac{1}{2}]$. Which of the following is a subring of R?
 - (a) 2Z
 - (b) $\mathbb{Z}[i]$
 - (c) $\{a \cdot i\sqrt{2} \mid a \in \mathbb{Z}\}$
 - (d) $\mathbb{Z}\left[\frac{i}{\sqrt{2}}\right]$
- **2**. Let L : K be a finite extension of fields. Which of the following assertions are correct:
 - (a) If the characteristic of K is zero, then L : K is normal.
 - (b) If the characteristic of K is zero, then L : K is separable.
 - (c) If L: K is normal, then L: K is a Galois extension.
 - (d) If the characteristic of K is positive, then L : K is normal if and only if it is separable.
- 3. Let K be a field, \overline{K} an algebraic closure of K and $P \in K[X]$ a non-constant polynomial. Let $L \subset \overline{K}$ denote the splitting field of P in \overline{K} . Which of the following assertions are correct:
 - (a) The extension L: K is a normal extension.
 - (b) If $x \in \overline{K}$ is a root of P, then L = K(x).
 - (c) The extension L: K is a Galois extension.
 - (d) If the polynomial P is irreducible, then L : K is a Galois extension.
 - (e) If the characteristic of K is zero, then L : K is a Galois extension.
- 4. Let K be a field, \overline{K} an algebraic closure of K and $L \subset \overline{K}$ a finite extension of K such that L: K is a Galois extension. Let $K \subset E \subset L$ be an intermediate extension. Which of the following assertions are correct:
 - (a) The extension L : E is a Galois extension.
 - (b) The extension E: K is a normal extension.
 - (c) The extension E: K is a separable extension.
- 5. Let K be a field, \overline{K} an algebraic closure of K and $L \subset \overline{K}$ a finite extension of K such that L: K is a Galois extension, and let G be its Galois group. Which of the following assertions are correct:
 - (a) For any subgroup H of G, the intermediate extension $E = L^H$ is a normal extension of K.
 - (b) Two subgroups H_1 and H_2 of G are equal if and only if $L^{H_1} = L^{H_2}$.
 - (c) Any subgroup H of G is the Galois group of some extension E: K for some $E \subset L$.

- (d) Any subgroup H of G is the Galois group of some extension L : E for some $E \subset L$.
- 6. Let K be a field, \overline{K} an algebraic closure of K and $L \subset \overline{K}$ a finite extension of K such that L: K is a Galois extension, and let G be its Galois group. Let $x \in L$ be given and $\sigma_0 \in G$ a non-trivial element. Which of the following assertions are correct:
 - (a) If $\sigma_0(x) = x$, then $x \in K$.
 - (b) If G is cyclic and $\sigma_0(x) = x$, then $x \in K$.
 - (c) The element

$$\sum_{\sigma\in G}\sigma(x)^2$$

belongs to K.

- 7. Let R be a ring and $\mathfrak{a} \subsetneq R$ an ideal. Which of the following statements are true?
 - (a) For arbitrary $r, s \in R$ we have $r + \mathfrak{a} = s + \mathfrak{a}$ if and only if r = s.
 - (b) If there exists a field K and a ring homomorphism $\varphi : R \to K$, such that $\ker(\varphi) = \mathfrak{a}$, then \mathfrak{a} is a maximal ideal.
 - (c) We have $(x) + \mathfrak{a} = (1)$ for all $x \in R \setminus \mathfrak{a}$ if and only if \mathfrak{a} is maximal.
 - (d) If a = (a, b) for some elements $a, b \in R$, then a is not principal.
- 8. Consider the ring $R := \mathbb{Z}[i]$ which, with respect to the norm mapping

$$N: R \to \mathbb{Z}^{>0}: a + bi \mapsto a^2 + b^2$$

is a Euclidean ring. Which of the following statements are correct?

- (a) The element 2 is prime in R.
- (b) An element $\pi \in R$ is irreducible if and only if $N(\pi)$ is prime.
- (c) For any $r_1, \ldots, r_n \in R$ there are elements $x_1, \ldots, x_n \in R$ such that

$$gcd(r_1,\ldots,r_n) = x_1r_1 + \ldots + x_nr_n.$$

- (d) $gcd(4+i,3+5i) \sim 1-4i$.
- 9. Which of the following polynomials is irreducible?
 - (a) $\frac{1}{10}X^4 + 3X^3 + 15X + \frac{2}{10}$ in the ring $\mathbb{Q}[X]$.
 - (b) $X^{2016} + X^{19} + X^2 1$ in the ring $\mathbb{Z}/3\mathbb{Z}[X]$.
 - (c) $Y^3 + (X^2 2iX 1)Y^2 + (X^2 + 1)Y X + i$ in the ring $\mathbb{C}[X, Y]$
- 10. Consider a ring R, a field K, and a homomorphism $\varphi : R \to K$. Which of the following statements are true?
 - (a) Then $ker(\varphi)$ is a prime ideal of R.
 - (b) If K is finite, R must also be finite.
 - (c) If R is finite, $im(\varphi)$ must be a field.