Single Choice 2

- **1**. In the ring $\mathbb{Z}[i]$, we have gcd(i, 1 i, 5) is given by
 - (a) 5
 - (b) 1 − *i*
 - (c) 2
 - (d) 1
- 2. Which of the following statements is wrong?
 - (a) Each principal ideal domain is a unique factorization domain.
 - (b) Each Euclidean ring is an integral domain.
 - (c) Each Euclidean ring is a principal ideal domain.
 - (d) Each unique factorization domain is a Euclidean ring.
- 3. Which of the following rings is **not** a principal ideal domain?
 - (a) $\mathbb{R}[X]$
 - (b) $\mathbb{Z}[X]$
 - (c) $\mathbb{Z}[X]/(X^2+1)$
 - (d) **R**
- **4**. Which of the following elements in $\mathbb{Z}[i]$ are irreducible?
 - (a) 2+i
 - (b) 1 + 3i
 - (c) 3+i
 - (d) All of the above.
- 5. Let K be a field and let $K[t^2, t^3]$ be the subring of K[t] generated by t^2 and t^3 . Which of the following statements is true?
 - (a) t^2 is irreducible in $K[t^2, t^3]$.
 - (b) t^2 is prime in $K[t^2, t^3]$.
 - (c) Every irreducible element is a prime element in $K[t^2, t^3]$.
 - (d) All of the above.