Single Choice 3

- 1. Let R be an integral domain and $p \in R$. Which of the following statements is not equivalent to the others?
 - (a) p is prime.
 - (b) R/pR is an integral domain.
 - (c) p is irreducible.
 - (d) All the statements above are equivalent to each other.
- 2. Which of the following statements is false?
 - (a) $(\mathbb{Z}[X])^* = \mathbb{Z}^*$
 - (b) $(\mathbb{Z}[i][X])^* = (\mathbb{Z}[i])^*$
 - (c) $(\mathbb{Z}/7\mathbb{Z}[X])^* = (\mathbb{Z}/7\mathbb{Z})^*$
 - (d) $(\mathbb{Z}/9\mathbb{Z}[X])^* = (\mathbb{Z}/9\mathbb{Z})^*$
- **3**. Which of the following polynomials is reducible in $\mathbb{Q}[X]$?
 - (a) $X^5 4X + 22$
 - (b) $7x^4 + 25X^2 + 15X 10$
 - (c) $2X^4 + 3X^3 + 3X^2 4$
 - (d) $5X^5 6X^4 + 12X^3 6$
- 4. The polynomial $X^4 + 4X + 1$ is
 - (a) reducible in $\mathbb{Q}[X]$.
 - (b) irreducible in $\mathbb{Q}[X]$.
- 5. Which of the following statements is true?
 - (a) 7 is irreducible and prime in $\mathbb{Z}[\sqrt{-13}]$.
 - (b) 7 is irreducible but not prime in $\mathbb{Z}[\sqrt{-13}]$.
 - (c) 7 is neither irreducible nor prime in $\mathbb{Z}[\sqrt{-13}]$.
 - (d) 7 is prime but not irreducible in $\mathbb{Z}[\sqrt{-13}]$.