Single Choice 3

1. Let R be an integral domain and $p \in R$. Which of the following statements is not equivalent to the others?
(a) p is prime.
(b) $R / p R$ is an integral domain.
(c) p is irreducible.
(d) All the statements above are equivalent to each other.
2. Which of the following statements is false?
(a) $(\mathbb{Z}[X])^{*}=\mathbb{Z}^{*}$
(b) $(\mathbb{Z}[i][X])^{*}=(\mathbb{Z}[i])^{*}$
(c) $(\mathbb{Z} / 7 \mathbb{Z}[X])^{*}=(\mathbb{Z} / 7 \mathbb{Z})^{*}$
(d) $(\mathbb{Z} / 9 \mathbb{Z}[X])^{*}=(\mathbb{Z} / 9 \mathbb{Z})^{*}$
3. Which of the following polynomials is reducible in $\mathbb{Q}[X]$?
(a) $X^{5}-4 X+22$
(b) $7 x^{4}+25 X^{2}+15 X-10$
(c) $2 X^{4}+3 X^{3}+3 X^{2}-4$
(d) $5 X^{5}-6 X^{4}+12 X^{3}-6$
4. The polynomial $X^{4}+4 X+1$ is
(a) reducible in $\mathrm{Q}[X]$.
(b) irreducible in $\mathbb{Q}[X]$.
5. Which of the following statements is true?
(a) 7 is irreducible and prime in $\mathbb{Z}[\sqrt{-13}]$.
(b) 7 is irreducible but not prime in $\mathbb{Z}[\sqrt{-13}]$.
(c) 7 is neither irreducible nor prime in $\mathbb{Z}[\sqrt{-13}]$.
(d) 7 is prime but not irreducible in $\mathbb{Z}[\sqrt{-13}]$.
