D-MATH Prof. Dr. Özlem Imamoglu

Single Choice 4

- 1. Let a, b be algebraic over \mathbb{Q} , such that $[\mathbb{Q}(a) : \mathbb{Q}] = 3$ and $[\mathbb{Q}(b) : \mathbb{Q}] = 5$. Then the possible degrees of $\mathbb{Q}(a, b)$ over \mathbb{Q} are
 - (a) [Q(a,b):Q] = 3
 - (b) $[\mathbb{Q}(a,b):\mathbb{Q}] = 5$
 - (c) [Q(a,b):Q] = 15
 - (d) All of the above.
- **2**. Let $L : \mathbb{Q}$ be a field extention and $a, b \in L \setminus \{0\}$ such that $a + b \neq 0$. Which of the following statements is **false**?
 - (a) $a^2 \in \mathbb{Q}(a+b,ab) \Rightarrow a \in \mathbb{Q}(a+b,ab)$
 - (b) $a \in \mathbb{Q}(a+b,ab) \Rightarrow a^2 \in \mathbb{Q}(a+b,ab)$
 - (c) $[\mathbb{Q}(a,b) : \mathbb{Q}(a+b,ab)]$ is equal to the degree of the minimal polynomial of a over $\mathbb{Q}(a+b,ab)$.
 - (d) All the statements above are true.
- **3**. Let M : L : K be field extentions and assume that a is algebraic over M, L and K. Then
 - (a) $m_{a,M} \mid m_{a,L}$ in M[x]
 - (b) $m_{a,L} \mid m_{a,K} \text{ in } L[x]$
 - (c) $m_{a,M} \mid m_{a,K} \text{ in } M[x]$
 - (d) All the statements above are true.
- **4**. Consider a field extention $\mathbb{Q}(a, b) : \mathbb{Q}$. Which of the following statements is **false**?
 - (a) If $\mathbb{Q}(a, b) : \mathbb{Q}$ is algebraic, then also a and b are algebraic over \mathbb{Q} .
 - (b) If $\mathbb{Q}(a+b) : \mathbb{Q}$ and $\mathbb{Q}(ab) : \mathbb{Q}$ are algebraic, then also a and b are algebraic over \mathbb{Q} .
 - (c) If a is transcendental over $\mathbb{Q}(b)$, then a is also transcendental over \mathbb{Q} .
 - (d) If a is transcendental over \mathbb{Q} , then a is also transcendental over $\mathbb{Q}(b)$.
- 5. Let a, b be algebraic over \mathbb{Q} , such that the minimal polynomial of a and b both have degree 2. Then the degree of the minimal polynomial of a + b is ...
 - (a) 2
 - (b) 4
 - (c) a divisor of 2
 - (d) a divisor of 4