Single Choice 6

- 1. Which of the fields below are a splitting field of the polynomial $X^4 3$ over \mathbb{Q} ?
 - (a) $\mathbb{Q}(\sqrt[4]{3}, i)$
 - (b) $\mathbb{Q}(\sqrt[4]{3}, i\sqrt[4]{3})$
 - (c) $\mathbb{Q}(\sqrt[4]{3}, i\sqrt[2]{3})$
 - (d) All of the above.
- **2**. Let K be a field. Which of the following statements is **false**?
 - (a) If K has no proper algebraic extensions, then every non-constant polynomial $f \in K[X]$ has at least one root in K.
 - (b) If each irreducible polynomial $f \in K[X]$ is linear, then K is algebraically closed.
 - (c) If K_1 and K_2 are algebraic closures of K, then K_1 and K_2 are isomorphic over K.
 - (d) If K contains a subfield which is algebraically closed, then K is algebraically closed as well.
- 3. Which field extension is normal?
 - (a) $\mathbb{F}_2(X) : \mathbb{F}_2(X^3)$
 - (b) $\mathbb{F}_5(X) : \mathbb{F}_5(X^5)$
 - (c) $\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}$
 - (d) $\mathbb{R}:\mathbb{Q}$

4. The statement: The field extension $\mathbb{Q}(\sqrt{2+\sqrt{2}}) : \mathbb{Q}$ is normal, is...

- (a) true
- (b) false
- **5**. Over which field is the polynomial $X^3 + 1$ separable?
 - (a) Q
 - (b) **R**
 - (c) \mathbb{F}_5
 - (d) All of the above.