Single Choice 6

1. Which of the fields below are a splitting field of the polynomial $X^{4}-3$ over \mathbb{Q} ?
(a) $\mathrm{Q}(\sqrt[4]{3}, i)$
(b) $\mathrm{Q}(\sqrt[4]{3}, i \sqrt[4]{3})$
(c) $\mathrm{Q}(\sqrt[4]{3}, i \sqrt[2]{3})$
(d) All of the above.
2. Let K be a field. Which of the following statements is false?
(a) If K has no proper algebraic extensions, then every non-constant polynomial $f \in K[X]$ has at least one root in K.
(b) If each irreducible polynomial $f \in K[X]$ is linear, then K is algebraically closed.
(c) If K_{1} and K_{2} are algebraic closures of K, then K_{1} and K_{2} are isomorphic over K.
(d) If K contains a subfield which is algebraically closed, then K is algebraically closed as well.
3. Which field extension is normal?
(a) $\mathbb{F}_{2}(X): \mathbb{F}_{2}\left(X^{3}\right)$
(b) $\mathbb{F}_{5}(X): \mathbb{F}_{5}\left(X^{5}\right)$
(c) $\mathbb{Q}(\sqrt[4]{5}): \mathbb{Q}$
(d) $\mathbb{R}: \mathbb{Q}$
4. The statement: The field extension $\mathbb{Q}(\sqrt{2+\sqrt{2}})$: \mathbb{Q} is normal, is...
(a) true
(b) false
5. Over which field is the polynomial $X^{3}+1$ separable?
(a) \mathbb{Q}
(b) \mathbb{R}
(c) \mathbb{F}_{5}
(d) All of the above.
