Single Choice 7

- 1. Which of the following rings is not isomorphic to the others?
 - (a) $\mathbb{F}_3[X]/(X^2 + X + 2)$
 - (b) $\mathbb{F}_3[X]/(X^2 + 2X + 2)$
 - (c) $\mathbb{F}_3[X]/(X^2 + X + 1)$
 - (d) \mathbb{F}_9
- **2**. How many irreducible factors does the polynomial $X^9 X$ have over \mathbb{F}_3 ?
 - (a) 2
 - (b) 4
 - (c) 6
 - (d) 9
- **3**. Which of the following elements is a generator of \mathbb{F}_{19}^{\times}
 - (a) <u>1</u>
 - (b) 3
 - (c) 7
 - (d) <u>9</u>
- 4. Let p be a prime number. Which of the following statements are false?
 - (a) There exists a field of order p^p .
 - (b) If $F : \mathbb{F}_{p^p}$ is a finite field extension, then $F : \mathbb{F}_{p^p}$ is simple.
 - (c) The unit group $\overline{\mathbb{F}}_p^{\times}$ is cyclic.
 - (d) If a field F is a splitting field of $X^{p^p} X \in \mathbb{F}_p[X]$ over \mathbb{F}_p , then F has p^p elements.
- **5**. How many irreducible polynomials of degree 2 are there over \mathbb{F}_2 ?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4