Single Choice 7

1. Which of the following rings is not isomorphic to the others?
(a) $\mathrm{F}_{3}[X] /\left(X^{2}+X+2\right)$
(b) $\mathrm{F}_{3}[X] /\left(X^{2}+2 X+2\right)$
(c) $\mathrm{F}_{3}[X] /\left(X^{2}+X+1\right)$
(d) \mathbb{F}_{9}
2. How many irreducible factors does the polynomial $X^{9}-X$ have over \mathbb{F}_{3} ?
(a) 2
(b) 4
(c) 6
(d) 9
3. Which of the following elements is a generator of \mathbb{F}_{19}^{\times}
(a) $\overline{1}$
(b) $\overline{3}$
(c) $\overline{7}$
(d) $\overline{9}$
4. Let p be a prime number. Which of the following statements are false?
(a) There exists a field of order p^{p}.
(b) If $F: \mathbb{F}_{p^{p}}$ is a finite field extension, then $F: \mathbb{F}_{p^{p}}$ is simple.
(c) The unit group $\overline{\mathbb{F}}_{p}^{\times}$is cyclic.
(d) If a field F is a splitting field of $X^{p^{p}}-X \in \mathbb{F}_{p}[X]$ over \mathbb{F}_{p}, then F has p^{p} elements.
5. How many irreducible polynomials of degree 2 are there over \mathbb{F}_{2} ?
(a) 1
(b) 2
(c) 3
(d) 4
