Solutions Single Choice 1

1. Which of the following statements is true?
(a) In any ring R, the zero ideal (0) is a prime ideal.
(b) Each principal ideal domain is an Euclidean domain.
(c) For all fields K and M, each ring homomorphism $K \rightarrow M$ is injective.
(d) For all fields K and M, each ring homomorphism $K \rightarrow M$ is surjective.

Solution: The correct answer is (c). The zero ideal is prime if and only if the ring is an integral domain. In (b), the converse statement is true, $\mathbb{Z}[(1+\sqrt{-19}) / 2]$ is a PID which is not Euclidean. For (d) we can take $\mathbb{Q} \hookrightarrow \mathbb{R}$.
2. Which subring of \mathbb{C} is not equal to the others?
(a) $\mathbb{Z}\left[\frac{i}{20},-10 i\right]$
(b) $\mathbb{Z}\left[\frac{1}{2}, \frac{i}{5}\right]$
(c) $\mathbb{Z}\left[\frac{1}{2}, 10 i\right]$
(d) $\mathbb{Z}\left[\frac{i}{20}, \frac{10}{i}\right]$

Solution: From $\frac{10}{i}=-10 i$ we see immediately that the rings given in (a) and (d) are equal. Further we have $\frac{1}{2}=\frac{i}{20} \cdot(-10 i)$ and $\frac{i}{5}=4 \cdot \frac{i}{20}$, so that the ring $\mathbb{Z}\left[\frac{1}{2}, \frac{i}{5}\right]$ is contained in $\mathbb{Z}\left[\frac{i}{20},-10 i\right]$. On the other hand, we have $\frac{i}{20}=\left(\frac{1}{2}\right)^{2} \cdot \frac{i}{5}$ and $-10 i=-50 \cdot \frac{i}{5}$, so that the rings given in (a) and (b) are equal. Since $10 i=50 \cdot \frac{i}{5}$, we have $\mathbb{Z}\left[\frac{1}{2}, 10 i\right] \subset \mathbb{Z}\left[\frac{1}{2}, \frac{i}{5}\right]$. We claim that $\frac{1}{25} \notin \mathbb{Z}\left[\frac{1}{2}, 10 i\right]$. Each element of $\mathbb{Z}\left[\frac{1}{2}, 10 i\right]$ can be represented as a finite sum

$$
\sum_{i} a_{i}\left(\frac{1}{2}\right)^{b_{i}}(10 i)^{c_{i}}
$$

for $a_{i} \in \mathbb{Z}, b_{i}, c_{i} \in \mathbb{Z} \geqslant 0$. Thus we can never get a denominator divisible by 5 , so our claim is true. But $\frac{1}{25}=-\left(\frac{i}{5}\right)^{2} \in \mathbb{Z}\left[\frac{1}{2}, \frac{i}{5}\right]$, hence the correct answer is (c).
3. $\mathrm{Q} \times \mathrm{Q} \times \mathrm{Q}$ is a group under componentwise addition. Consider the subgroup

$$
H:=\{h \cdot(1,2,3) \mid h \in \mathbb{Q}\} .
$$

Then $(\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}) / H$ is isomorphic to
(a) $\mathrm{Q} \times \mathrm{Q} \times \mathbb{Q}$
(b) $\mathrm{Q} \times \mathbb{Q}$
(c) \mathbb{Q}
(d) $\{0\}$

Solution: Define $f: \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q} \times \mathbb{Q}$ by $f(x, y, z)=(y-2 x, z-3 x)$.
Note that for each vector $\underline{x} \in H$ we have that $f(\underline{x})=\underline{0}$, so that $H \subseteq \operatorname{ker}(f)$. On the other hand, let $(x, y, z) \in \operatorname{ker}(f)$. Then $f(x, y, z)=(0,0) \Longleftrightarrow(y-2 x, z-3 x)=(0,0)$. Thus, we have $y=2 x$ and $z=3 x$. Thus $(x, y, z)=(x, 2 x, 3 x) \in H$.
Let $(a, b) \in \mathbb{Q} \times \mathbb{Q}$. Then $f(0, a, b)=(a, b)$, so f is surjective. Hence we conclude that (b) is the correct answer using the first isomorphism theorem.
4. Which of the following ideals in $\mathbb{Q}[X]$ is not a maximal ideal?
(a) $(X+1)$
(b) $\left(X^{2}+1\right)$
(c) $\left(X^{3}+1\right)$
(d) $\left(X^{4}+1\right)$

Solution: An ideal (f), for $0 \neq f \in \mathbb{Q}[X]$ is maximal if and only if f is irreducible. Since the only reducible polynomial above is $X^{3}+1=(X+1)\left(X^{2}-X+1\right)$, the correct answer is (c).
5. Let R^{*} be the group of units. Which of the following is true for each $x \in R^{*}$?
(a) $x+1 \in R^{*}$
(b) $x^{2} \in R^{*}$
(c) $\forall y \in R \exists z \in R: y \cdot z=x$
(d) All the statements above are true.

Solution: Only (b) is correct. A product of two elements in R^{*} is again contained in R^{*}. In a) we can take $x=-1$, and in c) take $y=0$ as counter examples.

