- 1. Which of the following statements is true?
 - (a) In any ring R, the zero ideal (0) is a prime ideal.
 - (b) Each principal ideal domain is an Euclidean domain.
 - (c) For all fields K and M, each ring homomorphism $K \to M$ is injective.
 - (d) For all fields K and M, each ring homomorphism $K \to M$ is surjective.

Solution: The correct answer is (c). The zero ideal is prime if and only if the ring is an integral domain. In (b), the converse statement is true, $\mathbb{Z}[(1 + \sqrt{-19})/2]$ is a PID which is not Euclidean. For (d) we can take $\mathbb{Q} \hookrightarrow \mathbb{R}$.

- **2**. Which subring of \mathbb{C} is **not** equal to the others?
 - (a) $\mathbb{Z}[\frac{i}{20}, -10i]$
 - (b) $\mathbb{Z}[\frac{1}{2}, \frac{i}{5}]$
 - (c) $\mathbb{Z}[\frac{1}{2}, 10i]$
 - (d) $\mathbb{Z}\left[\frac{i}{20}, \frac{10}{i}\right]$

Solution: From $\frac{10}{i} = -10i$ we see immediately that the rings given in (a) and (d) are equal. Further we have $\frac{1}{2} = \frac{i}{20} \cdot (-10i)$ and $\frac{i}{5} = 4 \cdot \frac{i}{20}$, so that the ring $\mathbb{Z}[\frac{1}{2}, \frac{i}{5}]$ is contained in $\mathbb{Z}[\frac{i}{20}, -10i]$. On the other hand, we have $\frac{i}{20} = (\frac{1}{2})^2 \cdot \frac{i}{5}$ and $-10i = -50 \cdot \frac{i}{5}$, so that the rings given in (a) and (b) are equal. Since $10i = 50 \cdot \frac{i}{5}$, we have $\mathbb{Z}[\frac{1}{2}, 10i] \subset \mathbb{Z}[\frac{1}{2}, \frac{i}{5}]$. We claim that $\frac{1}{25} \notin \mathbb{Z}[\frac{1}{2}, 10i]$. Each element of $\mathbb{Z}[\frac{1}{2}, 10i]$ can be represented as a finite sum

$$\sum_{i} a_i \left(\frac{1}{2}\right)^{b_i} (10i)^{c_i}$$

for $a_i \in \mathbb{Z}, b_i, c_i \in \mathbb{Z}_{\geq 0}$. Thus we can never get a denominator divisible by 5, so our claim is true. But $\frac{1}{25} = -\left(\frac{i}{5}\right)^2 \in \mathbb{Z}\left[\frac{1}{2}, \frac{i}{5}\right]$, hence the correct answer is (c).

3. $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$ is a group under componentwise addition. Consider the subgroup

$$H := \{h \cdot (1, 2, 3) \mid h \in \mathbb{Q}\}.$$

Then $(\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q})/H$ is isomorphic to

- (a) $\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}$
- (b) $\mathbb{Q} \times \mathbb{Q}$
- (c) Q
- (d) $\{0\}$

Solution: Define $f : \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q}$ by f(x, y, z) = (y - 2x, z - 3x).

Note that for each vector $\underline{x} \in H$ we have that $f(\underline{x}) = \underline{0}$, so that $H \subseteq \text{ker}(f)$. On the other hand, let $(x, y, z) \in \text{ker}(f)$. Then $f(x, y, z) = (0, 0) \iff (y - 2x, z - 3x) = (0, 0)$. Thus, we have y = 2x and z = 3x. Thus $(x, y, z) = (x, 2x, 3x) \in H$.

Let $(a, b) \in \mathbb{Q} \times \mathbb{Q}$. Then f(0, a, b) = (a, b), so f is surjective. Hence we conclude that (b) is the correct answer using the first isomorphism theorem.

- **4**. Which of the following ideals in $\mathbb{Q}[X]$ is not a maximal ideal?
 - (a) (X+1)
 - (b) $(X^2 + 1)$
 - (c) $(X^3 + 1)$
 - (d) $(X^4 + 1)$

Solution: An ideal (f), for $0 \neq f \in \mathbb{Q}[X]$ is maximal if and only if f is irreducible. Since the only reducible polynomial above is $X^3 + 1 = (X + 1)(X^2 - X + 1)$, the correct answer is (c).

- 5. Let R^* be the group of units. Which of the following is true for each $x \in R^*$?
 - (a) $x + 1 \in R^*$
 - (b) $x^2 \in R^*$
 - (c) $\forall y \in R \exists z \in R : y \cdot z = x$
 - (d) All the statements above are true.

Solution: Only (b) is correct. A product of two elements in R^* is again contained in R^* . In a) we can take x = -1, and in c) take y = 0 as counter examples.