- 1. The group $Gal(\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q})$ is isomorphic to...
 - (a) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 - (b) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$
 - (c) $\mathbb{Z}/8\mathbb{Z}$
 - (d) D_4

Solution: The correct answer is (d). Since $\left[\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}\right] = 4$ and $\left[\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}(\sqrt[4]{2})\right] = 2$ (since $\mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{R}$), we have that the Galois group $G := \operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q})$ has order 8. Let $\sigma \in G$ be the automorphism sending $\sqrt[4]{2} \mapsto i\sqrt[4]{2}$ and $i \mapsto i$. Let $\theta \in G$ denote complex conjugation. Then σ has order 4. Since $\theta \sigma \theta^{-1}$ sends $\sqrt[4]{2}$ to $-i\sqrt[4]{2}$ and i to i, we have $\theta \sigma \theta^{-1} = \sigma^3 = \sigma^{-1}$, so that

$$\langle \sigma, \theta \rangle = \langle \sigma, \theta \mid \sigma^4 = \theta^2 = 1, \theta \sigma \theta^{-1} = \sigma^{-1} \rangle \cong D_4.$$

Since $|D_4| = 8$ and the order of G is 8, we are done.

- **2**. Let L : K be a Galois extension with Galois group G. Let $a \in L$ be given. Which of the following statements is false?
 - (a) Let $\sigma \in G$ be a non-trivial element. If G is cyclic and $\sigma(a) = a$, then $a \in K$.
 - (b) The element

$$\sum_{\varphi \in G} \varphi(a)$$

is in K.

- (c) If the set $\{\varphi(a) \mid \varphi \in G\}$ contains at most two elements, then $[K(a) : K] \leq 2$.
- (d) If $\varphi(a) = a$ for all $\varphi \in G$, then $a \in K$.

Solution: The correct answer is (a). We know that part (d) is true from the lectures. For part (a), note that σ might not be a generator of the cyclic group.

For part (b), let $\tau \in G$ be arbitrary. Then

$$\tau\left(\sum_{\varphi\in G}\varphi(a)\right) = \sum_{\varphi\in G}\tau(\varphi(a)) = \sum_{\tilde{\varphi}\in G}\tilde{\varphi}(a),$$

so by part (d), we obtain that this is in K.

For part (d), note that the roots of the minimal polynomial f of a are among the values $\varphi(a)$, by transitivity of the action of the Galois group of the splitting field of f on the set of roots.

3. Which of the following extensions is a normal closure of $\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}$?

- (a) $\mathbb{Q}(\sqrt[8]{5}, i\sqrt[4]{5}) : \mathbb{Q}(\sqrt[4]{5})$
- (b) $\mathbb{Q}(\sqrt[4]{5}, i\sqrt[2]{5}) : \mathbb{Q}(\sqrt[4]{5})$
- (c) $\mathbb{Q}(\sqrt[8]{5},i):\mathbb{Q}(\sqrt[4]{5})$
- (d) $\mathbb{Q}(\sqrt[4]{5})$ is already a normal closure of $\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}$

Solution: The correct answer is (b): the minimal polynomial of $\sqrt[4]{5}$ over Q is X^4-5 , and it has zeros $\pm \sqrt[4]{5}$ and $i\sqrt[4]{5}$. Hence $\mathbb{Q}(\sqrt[4]{5}, i\sqrt[4]{5})$ is a normal closure. Since $i = i\sqrt[2]{5}/(\sqrt[4]{5})^2$, we have that $\mathbb{Q}(\sqrt[4]{5}, i\sqrt[4]{5}) = \mathbb{Q}(\sqrt[4]{5}, i\sqrt[2]{5})$. Since $\mathbb{Q}(\sqrt[4]{5}, i\sqrt[2]{5}) \subseteq \mathbb{Q}(\sqrt[8]{5}, i\sqrt[4]{5})$ and $\mathbb{Q}(\sqrt[4]{5}, i\sqrt[2]{5}) \subseteq \mathbb{Q}(\sqrt[8]{5}, i)$ and the normal closure is the smallest extension of $\mathbb{Q}(\sqrt[4]{5})$ which is normal, (a) and (c) are wrong.

- 4. Let L : K be a Galois extension with Galois group G. Which of the following statements is true?
 - (a) Any subgroup $H \leq G$ is the Galois group of some extension M : K, for some $M \subset L$.
 - (b) Any subgroup $H \leq G$ is the Galois group of some extension L: M, for some $M \subset L$.
 - (c) For any subgroup $H \leq G$ the intermediate extension L^H is a normal extension of K.
 - (d) None of the statements above is true.

Solution: Part (a) is not correct, a counterexample is given by: the symmetric group $G = S_3$ and H is generated by a cycle of length 3, so that |H| = 3, then an intermediate M with Gal(M : K) = H would correspond to a normal subgroup R < G with $[S_3 : R] = [L : M] = 2$, but one can see easily that there is no normal subgroup of order 2 in S_3 . We have seen part (b) in the lectures in the Galois correspondence. For part (c), note that L^H is normal over K if and only if H is a normal subgroup of K.

- 5. Which of the following statements is true for every algebraic field extensions M : L : K?
 - (a) If M : K is Galois, then also M : L is Galois.
 - (b) If M : K is Galois, then also L : K is Galois.
 - (c) If M : L and L : K are both Galois, then also M : K is Galois.
 - (d) All of the statements above are true.

Solution: The correct answer is (a): this is Theorem 4.3 from the lectures. A counter-example for part (b) is $\mathbb{Q}(\sqrt[4]{2}, i) : \mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}$, and for part (c) consider $\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}(\sqrt{2}) : \mathbb{Q}$.