Solutions Single Choice 11

1. The Galois group of the splitting field of the polynomial $x^{3}+x+1$ over Q is isomorphic to...
(a) C_{2}
(b) C_{6}
(c) A_{3}
(d) S_{3}

Solution: The correct answer is (d). Each rational zero of the polynomial $f(x):=x^{3}+x+1$ has to divide the constant term, but since ± 1 are not zeros, we have that f has no rational zeros. Since it has degree 3 , it has to be irreducible over \mathbb{Q}.
Since the polynomial has order 3, its Galois group G is a subgroup of S_{3}. By looking at the graph of the function $\mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{3}+x+1$, we see that it has precisely one real zero, which we will denote by a. Then $[\mathrm{Q}(a): \mathrm{Q}]=3$, as f is irreducible, and since the other two zeros are complex, those complex zeros generate a field extension of degree 2 over $\mathbb{Q}(a)$. Hence the splitting field of f over \mathbb{Q} has degree 6 , and its Galois group is equal to S_{3}.
2. The order of the Galois group of the splitting field of the polynomial $x^{3}-2 x+1$ over \mathbb{Q} is equal to...
(a) 2
(b) 3
(c) 6
(d) 9

Solution: The correct answer is (a). We can factor $x^{3}-2 x+1=(x-1)\left(x^{2}+x-1\right)$, so it has zeros 1 and $\frac{-1 \pm \sqrt{5}}{2}$. Hence the splitting field of $x^{3}-2 x+1$ has degree 2 over \mathbb{Q} and the Galois group has order 2 .
3. Let $f(x):=x^{3}-12 x+34$. Let K be a splitting field of f over \mathbb{Q}. Which of the following statements is false?
(a) $\quad f$ is irreducible over \mathbf{Q}
(b) $\operatorname{Gal}(K: \mathbb{Q})$ contains an element of order 2
(c) f has precisely one real zero
(d) $\operatorname{Gal}(K: \mathbb{Q}) \cong A_{3}$

Solution: The correct answer is (d). Using Eisenstein's criteria for $p=2$, we obtain that f is irreducible over \mathbb{Q}.
To see that f has precisely one real root, we can compute its derivative: $f^{\prime}(x)=3 x^{2}-12=$ $3(x-2)(x+2)$. Since $\left(f(-2), f^{\prime}(-2)\right)=(-18,0)$ and $\left(f(2), f^{\prime}(2)\right)=(-50,0)$ we get that f increases from $-\infty$ to -2 , then decreases to -50 on the interval $(-2,2)$, and then steadily increases until it passes the real line (and thus has only one real zero). Hence part (c) follows.

Since f has two complex zeros, we have that complex conjugation has to have order 2 in the Galois group, so part (b) is true.

The Galois group of f over \mathbb{Q} has to have an element of order 2 , so the order of the group is also divisible by 2 and as $\left|A_{3}\right|=3$, part (d) is false.
Remark. In both Exercises 1 and 3 we could have used the discriminant as an alternative way to solve them.
4. Let M be a Galois extension of K with $|\operatorname{Gal}(M: K)|=12$. Which of the following statements is false?
(a) There always exists a subfield L of M containing K with $[L: K]=2$.
(b) There always exists a subfield L of M containing K with $[L: K]=3$.
(c) There always exists a subfield L of M containing K with $[L: K]=4$.
(d) There always exists a subfield L of M containing K with $[L: K]=6$.

Solution: The correct answer is (a). let d be a positive integer. By the Galois correspondence, there exists a subfield L of M containing K with $[L: K]=d$ if and only if there exists a subgroup $H \leqslant \operatorname{Gal}(M: K)=: G$ with $|G| /|H|=d$.
The group A_{4} has order 12 , but it does not have a subrgoup of order 6 . This means that if $G \cong A_{4}$, then there does not exist a subgroup $H \leqslant G$ with $|G| /|H|=12 / 6=2$, so there does not exist a subfield L of M containing K with $[L: K]=2$.

Parts (b), (c) and (d) follow from the fact that every group of order 12 has a subgroup of order 2, 3 and 4. This follows from the Sylow theorems.
5. Which of the following statements is false?
(a) Let K be a field, $f \in K[X]$ a polynomial, such that the discriminant of f is nonzero and a perfect square. Then the Galois group of f over K is contained in A_{n} for $n=\operatorname{deg}(f)$.
(b) If $K: \mathbb{Q}$ is a finite normal extension, then there exists an extension N of K such that every Q -monomorphism $\varphi: K \rightarrow N$ is a Q -automorphism of K.
(c) Every finite, separable and normal field extension is Galois.
(d) The 11-th cyclotomic polynomial is equal to $\sum_{k=0}^{10} x^{k}$.

Solution: The correct answer is (a): this holds true if $\operatorname{char}(K) \neq 2$ (see Exercise sheet 10 , question 5). Part (b) is Theorem 4.8 from the lectures. Part (c) is Theorem 4.10. For part (d), we have seen in the lectures that for a prime number p, the p-th cyclotomic polynomial is given by $\sum_{k=0}^{p-1} x^{k}$.

