Solutions Single Choice 12

1. Let K be the splitting field of $x^{49}-1$ over \mathbb{Q}. Then $[K: \mathbb{Q}]$ is equal to
(a) 7
(b) 42
(c) 48
(d) 49

Solution: The correct answer is (d). Let ζ denote the 49-th primitive root of unity. We have seen in the lecture that

$$
[K: \mathbb{Q}]=[\mathbb{Q}(\zeta): \mathbb{Q}]=\varphi(49),
$$

where φ is Euler's totient function. We have seen in Algebra I that for a prime number p and a positive integer k we have

$$
\varphi\left(p^{k}\right)=(p-1) p^{k-1}
$$

so $[K: \mathbb{Q}]=6 \cdot 7=42$.
2. Let $r \in \mathbb{Z}_{>1}$ and let $L: K$ be a Galois extension such that $\operatorname{Gal}(L: K)$ is cyclic of order 2^{r}. What is the number of the subfields M such that $K \subsetneq M \subsetneq L$?
(a) $r-1$
(b) r
(c) $r+1$
(d) $r+2$

Solution: Let σ be a generator of $G:=\operatorname{Gal}(L: K)$, so that $\sigma^{2^{r}}=1$. For $0 \leqslant m \leqslant r$ let H_{m} be the subgroup generated by $\sigma^{2^{m}}$, which is cyclic of order 2^{r-m}. Then we have

$$
1=H_{r}<H_{r-1}<\cdots<H_{0}=G,
$$

and since G is cyclic, are these all the subgroups of G.
Write $M_{m}:=L^{H_{m}}$. Then by the Galois correspondence we obtain the intermediate fields:

$$
L=M_{r}: M_{r-1}: \cdots: M_{0}=K
$$

Hence there are $r-1$ subfields M such that $K \subsetneq M \subsetneq L$.
3. Let K be the splitting field of $x^{42}-1$ over \mathbb{Q}. What is the number of the subfields M such that $\mathrm{Q} \subsetneq M \subsetneq K$?
(a) 3
(b) 4
(c) 6
(d) 8

Solution: The correct answer is (d). By Theorem 6.7 we have

$$
\operatorname{Gal}(K: \mathbb{Q}) \cong(\mathbb{Z} / 42 \mathbb{Z})^{\times},
$$

and

$$
(\mathbb{Z} / 42 \mathbb{Z})^{\times} \cong(\mathbb{Z} / 2 \mathbb{Z})^{\times} \times(\mathbb{Z} / 3 \mathbb{Z})^{\times} \times(\mathbb{Z} / 7 \mathbb{Z})^{\times} \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 6 \mathbb{Z})
$$

The group $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 6 \mathbb{Z})$ has precisely 8 proper non-trivial subgroups, so by the Galois correspondence there are also 8 subfields M such that $\mathrm{Q} \subsetneq M \subsetneq K$.
Alternatively, we can determine the group $G:=\operatorname{Gal}(K: \mathbb{Q})$ more explicitly by looking at its automorphisms. Automorphisms in G are determined by the image of the 42 -th root of unity ζ. Consider the automorphisms $\varphi: \zeta \mapsto \zeta^{5}$ and $\sigma: \zeta \mapsto \zeta^{13}$. Then φ has order 6, while σ has order 2. Also $\varphi \sigma=\sigma \varphi$, which gives $G \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 6 \mathbb{Z})$, since $\langle\sigma\rangle$ is not a subgroup of $\langle\varphi\rangle$.
4. Let $f \in \mathbb{Q}[X]$ be irreducible and let K denote its splitting field. If $\operatorname{Gal}(K: \mathbb{Q})=D_{4}$ (the dihedral group of order 8), what are the possibilities for the degree of f ?
(a) Only the degree 4 is possible.
(b) Only the degree 8 is possible.
(c) Only the degrees 4 and 8 are possible.
(d) The degrees 2, 4 and 8 are all possible.

Solution: The correct answer is (c). The polynomial f has to have degree greater than 2 , since otherwise the Galois group would be C_{2}. For degree 4 note that $x^{4}-2$ is a polynomial of degree 4 over \mathbb{Q}, which has Galois group isomorphic to D_{4}. The splitting field is given by $\mathbb{Q}(\sqrt[4]{2}, i)$ and considering the automorphisms $\varphi: \sqrt[4]{2} \mapsto \sqrt[4]{2}, i \mapsto-i$ and $\sigma: \sqrt[4]{2} \mapsto$ $i \sqrt[4]{2}, i \mapsto i$, we can compute

$$
\operatorname{Gal}(K: \mathbb{Q})=\left\langle\sigma, \varphi: \sigma^{4}=\varphi^{2}=1, \varphi \sigma \varphi^{-1}=\sigma^{-1}\right\rangle \cong D_{4} .
$$

Also, note that $\mathbb{Q}(\sqrt[4]{2}, i)=\mathbb{Q}(\sqrt[4]{2}+i)$, and the element $\sqrt[4]{2}+i$ has minimal polynomial $x^{8}+4 x^{6}+2 x^{4}+28 x^{2}+1$ over \mathbb{Q}, which has degree 8 .
5. Which of the following statements is false?
(a) There exists a primitive root of unity ζ such that $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\zeta)$.
(b) Let $K: \mathbb{Q}$ be a finite normal extension. If $\operatorname{Gal}(K: \mathbb{Q})$ is solvable, then there exists an extension $L: K$ such that $L: \mathbb{Q}$ is radical.
(c) The Galois group of the polynomial $X^{4}+X^{2}+1$ over \mathbb{Q} is solvable.
(d) Each radical extension is normal.

Solution: Part (a) is the Kronecker-Weber theorem, since $\operatorname{Gal}(\mathbb{Q}(\sqrt{5}): \mathbb{Q})=C_{2}$ is an abelian group. From Theorem 7.5 we obtain part (b).
Part (c) follows from Theorem 7.6: since $X^{4}+X^{2}+1$ is solvable by radicals. More precisely,

$$
X^{4}+X^{2}+1=\left(X^{2}+X+1\right)\left(X^{2}-X+1\right)
$$

which has zeros $\pm \frac{1}{2} \pm \frac{i \sqrt{3}}{2}$.
Part (d) is false: consider the radical extension $\mathrm{Q}(\sqrt[3]{3})$: Q .

