Solutions Single Choice 13

1. Let R be a ring and M an R-module. For $n \in \mathbb{Z}_{\geqslant 1}$ and each $1 \leqslant i \leqslant n$ let M_{i} be a submodule of M. Which of the following statements is false?
(a) The sum $\sum_{i=1}^{n} M_{i}$ is a submodule of M.
(b) The direct sum $\oplus_{i=1}^{n} M_{i}$ is a submodule of M^{n}.
(c) The intersection $\bigcap_{i=1}^{n} M_{i}$ is a submodule of M.
(d) The union $\bigcup_{i=1}^{n} M_{i}$ is a submodule of M.

Solution: The correct answer is (d). Part (a) was seen in the lectures. For part (b) note that addition and multiplication of the direct sum $\oplus_{i=1}^{n} M$ are defined componentwise. Part (c) was discussed in the lecture (see lecture notes of 22.05.). A counter-example for part (d) is given for $R \neq 0$ and $M:=R^{2}$. Let $M_{1}:=\left\langle\binom{ 1}{0}\right\rangle$ and $M_{2}:=\left\langle\binom{ 0}{1}\right\rangle$. Then for example $\binom{1}{0}+\binom{0}{1} \notin M_{1} \cup M_{2}$.
2. Let R be a ring. Which of the following statements is false?
(a) Each submodule of R is an ideal.
(b) Let $\mathfrak{a} \subset R$ be an ideal. Then \mathfrak{a} is a submodule of R.
(c) For each ideal $\mathfrak{a} \subset R, R / \mathfrak{a}$ is an R-module.
(d) Let M and N be two R-modules generated by a single element. Then $M \cong N$.

Solution: The correct answer is (d). Parts (a) and (b) were seen in the lectures. From Prop. 9.3 in the lectures it follows that R / \mathfrak{a} is a submodule as well. For part (d), let $R:=\mathbb{Z}$ and consider $M:=\mathbb{Z}$ and $N:=\mathbb{Z} / 2 \mathbb{Z}$. Both are generated by a single element, but are not isomorphic (one is finite while the other is infinite).
3. Let M and N be two \mathbb{Z}-modules. Which of the following statements is false?
(a) $\mathrm{A} \mathbb{Z}$-module homomorphism is an isomorphism if it is bijective.
(b) For each $M \rightarrow N$ surjective \mathbb{Z}-module homomorphism there exists a submodule \tilde{M} of M such that $\tilde{M} \cong N$.
(c) For each $M \rightarrow N$ surjective \mathbb{Z}-module homomorphism there exists a submodule \tilde{M} of M such that $M / \tilde{M} \cong N$.
(d) There exists a \mathbb{Z}-module homomorphism $M \rightarrow N$.

Solution: The correct answer is (b): take $M:=\mathbb{Z}$ and $N:=\mathbb{Z} / 2 \mathbb{Z}$. Then no submodule of \mathbb{Z} has an element $m \in \mathbb{Z} \backslash\{0\}$ for which we would have $2 m=0$. Part (a) was seen in the lectures. Part (c) follows by taking \tilde{M} to be the kernel of the homomorphism and applying Theorem 9.4. For part (d) we can always take the zero-homomorphism.
4. Let $R:=\mathbb{Z}[\sqrt{-5}]$. Let $\mathfrak{p}:=(3,1+\sqrt{-5})$ and $\mathfrak{q}:=(3,1-\sqrt{-5})$ be ideals of R. Which of the following statements is true?
(a) The ideals \mathfrak{p} and \mathfrak{q} are isomorphic as \mathbb{Z}-modules, but not as R-modules.
(b) The ideals \mathfrak{p} and \mathfrak{q} are isomorphic as R-modules, but not as \mathbb{Z}-modules.
(c) The ideals \mathfrak{p} and \mathfrak{q} are isomorphic as both R-modules and \mathbb{Z}-modules.
(d) The ideals \mathfrak{p} and \mathfrak{q} are not isomorphic as either R-modules or \mathbb{Z}-modules.

Solution: The correct answer is (c). Complex conjugation is a \mathbb{Z}-module isomorphism. Since

$$
\mathfrak{p}:=\{3 a+(1+\sqrt{-5}) b \mid a, b \in R\},
$$

we have that $\overline{\mathfrak{p}}=(3,1-\sqrt{-5})=\mathfrak{q}$, so \mathfrak{p} and \mathfrak{q} are isomorphic as \mathbb{Z}-modules.
Next we want to check if they are isomorphic as R-modules. Note that complex conjugation is not R-linear: let φ denote complex conjugation, and for $r \in R$ and m an element of an R-module, we would have $\varphi(r m)=\bar{r} \varphi(m)$ instead of $r \varphi(m)$. Thus we would have to construct an isomorphism differently. We will describe a more general way how to do that.

Let K be the fraction field of R. If $k \in K^{\times}$then the map on R-modules $\varphi: a \mapsto \frac{1}{k} a$ is R-linear: $\varphi(r m)=\frac{1}{k} r m=\varphi(r m)$. It is also clearly additive. Moreover, φ is bijective since we can define an inverse by setting $\varphi^{-1}(b):=k b$. So if $\mathfrak{p}=k \mathfrak{q}$ for some $k \in K^{\times}$, we would have an isomorphism. Note that $K=\mathbb{Q}[\sqrt{-5}]$ and calculate

$$
\begin{aligned}
\frac{2+\sqrt{-5}}{3}\{3 a+(1+\sqrt{-5}) b \mid a, b \in R\} & =\{(2+\sqrt{-5}) a+(-1+\sqrt{-5}) b \mid a, b \in R\} \\
& =\{3 a+(1-\sqrt{-5}) b \mid a, b \in R\}
\end{aligned}
$$

so that $\varphi: \mathfrak{p} \rightarrow \mathfrak{q}, a \mapsto \frac{2+\sqrt{-5}}{3} a$ is an R-isomorphism.
5. Consider the Q-module $M:=\mathbb{Q}^{2}$ as a $\mathbb{Q}[X]$-module such that scalar multiplication by X is given by left multiplication by the matrix $A:=\left(\begin{array}{ll}0 & 3 \\ 3 & 0\end{array}\right)$. Which of the following $\mathrm{Q}[X]$ isomorphisms holds?
(a) $M \cong \mathbb{Q}[X] /(X-9)$
(b) $M \cong \mathbb{Q}[X] /\left(X^{2}-9\right)$
(c) $M \cong \mathbb{Q}[X] /(X)$
(d) $M \cong \mathbb{Q}[X] /(X+3)^{2}$

Solution: The correct answer is (b). The characteristic polynomial of the matrix A is given by $X^{2}-9=(X-3)(X+3)$. Hence the polynomial $X^{2}-9$ kills everything in V, since for $\mathbf{v} \in M$, we have $\left(X^{2}-9\right) \mathbf{v}=A^{2} \mathbf{v}-9 \mathbf{v}=0$. Hence

$$
\mathbb{Q}[X] /\left(X^{2}-9\right) \cong M
$$

