Solutions Single Choice 2

1. In the ring $\mathbb{Z}[i]$, we have $\operatorname{gcd}(i, 1-i, 5)$ is given by
(a) 5
(b) $1-i$
(c) 2
(d) 1

Solution: We have the the units of $\mathbb{Z}[i]$ are given by $\{ \pm 1, \pm i\}$, hence i is a unit in $\mathbb{Z}[i]$, so the greatest common divisor has to be a unit as well. Hence is (d) the correct answer.
2. Which of the following statements is wrong?
(a) Each principal ideal domain is a unique factorization domain.
(b) Each Euclidean ring is an integral domain.
(c) Each Euclidean ring is a principal ideal domain.
(d) Each unique factorization domain is a Euclidean ring.

Solution: The correct answer is (d): see notes of Lecture 2.
3. Which of the following rings is not a principal ideal domain?
(a) $\mathbb{R}[X]$
(b) $\mathbb{Z}[X]$
(c) $\mathbb{Z}[X] /\left(X^{2}+1\right)$
(d) \mathbb{R}

Solution: The correct answer is $\mathbf{b})$. Note that $\mathbb{Z}[X] /\left(X^{2}+1\right) \cong \mathbb{Z}[i]$ and we have seen in the lecture that this is a PID. We have seen in the lecture as well that any field R is a PID, just like $R[X]$, for R a field.
4. Which of the following elements in $\mathbb{Z}[i]$ are irreducible?
(a) $2+i$
(b) $1+3 i$
(c) $3+i$
(d) All of the above.

Solution: Only $2+i$ is irreducible. Note that $3+i=(1-i)(1+2 i)$ and $1+3 i=(1+i)(2+i)$.
5. Let K be a field and let $K\left[t^{2}, t^{3}\right]$ be the subring of $K[t]$ generated by t^{2} and t^{3}. Which of the following statements is true?
(a) t^{2} is irreducible in $K\left[t^{2}, t^{3}\right]$.
(b) t^{2} is prime in $K\left[t^{2}, t^{3}\right]$.
(c) Every irreducible element is a prime element in $K\left[t^{2}, t^{3}\right]$.
(d) All of the above.

Solution: The correct answer is a). For b, note that t^{2} divides $t^{3} \cdot t^{3}$, but does not divide t^{3} in $K\left[t^{2}, t^{3}\right]$. Thus not every irreducible element is prime in $K\left[t^{2}, t^{3}\right]$.

