- 1. In the ring $\mathbb{Z}[i]$, we have gcd(i, 1 i, 5) is given by
 - (a) 5
 - (b) 1 − *i*
 - (c) 2
 - (d) 1

Solution: We have the units of $\mathbb{Z}[i]$ are given by $\{\pm 1, \pm i\}$, hence *i* is a unit in $\mathbb{Z}[i]$, so the greatest common divisor has to be a unit as well. Hence is (d) the correct answer.

- 2. Which of the following statements is wrong?
 - (a) Each principal ideal domain is a unique factorization domain.
 - (b) Each Euclidean ring is an integral domain.
 - (c) Each Euclidean ring is a principal ideal domain.
 - (d) Each unique factorization domain is a Euclidean ring.

Solution: The correct answer is (d): see notes of Lecture 2.

- 3. Which of the following rings is **not** a principal ideal domain?
 - (a) $\mathbb{R}[X]$
 - (b) $\mathbb{Z}[X]$
 - (c) $\mathbb{Z}[X]/(X^2+1)$
 - (d) **R**

Solution: The correct answer is b). Note that $\mathbb{Z}[X]/(X^2 + 1) \cong \mathbb{Z}[i]$ and we have seen in the lecture that this is a PID. We have seen in the lecture as well that any field R is a PID, just like R[X], for R a field.

- **4**. Which of the following elements in $\mathbb{Z}[i]$ are irreducible?
 - (a) 2+i
 - (b) 1 + 3i
 - (c) 3+i
 - (d) All of the above.

Solution: Only 2+i is irreducible. Note that 3+i = (1-i)(1+2i) and 1+3i = (1+i)(2+i).

- 5. Let K be a field and let $K[t^2, t^3]$ be the subring of K[t] generated by t^2 and t^3 . Which of the following statements is true?
 - (a) t^2 is irreducible in $K[t^2, t^3]$.
 - (b) t^2 is prime in $K[t^2, t^3]$.
 - (c) Every irreducible element is a prime element in $K[t^2, t^3]$.
 - (d) All of the above.

Solution: The correct answer is a). For b, note that t^2 divides $t^3 \cdot t^3$, but does not divide t^3 in $K[t^2, t^3]$. Thus not every irreducible element is prime in $K[t^2, t^3]$.