Solutions Single Choice 3

1. Let R be an integral domain and $p \in R$. Which of the following statements is not equivalent to the others?
(a) p is prime.
(b) $R / p R$ is an integral domain.
(c) p is irreducible.
(d) All the statements above are equivalent to each other.

Solution: The solution is (c). From the lectures we know that p is prime if and only if the quotient $R / p R$ is an integral domain. For a counter-example for part (c) being equivalent to (a) see Question 5 below.
2. Which of the following statements is false?
(a) $(\mathbb{Z}[X])^{*}=\mathbb{Z}^{*}$
(b) $(\mathbb{Z}[i][X])^{*}=(\mathbb{Z}[i])^{*}$
(c) $(\mathbb{Z} / 7 \mathbb{Z}[X])^{*}=(\mathbb{Z} / 7 \mathbb{Z})^{*}$
(d) $(\mathbb{Z} / 9 \mathbb{Z}[X])^{*}=(\mathbb{Z} / 9 \mathbb{Z})^{*}$

Solution: The correct answer is (d). For each integral domain R we have that $(R[X])^{*}=R^{*}$. Consider the ring $\mathbb{Z} / 9 \mathbb{Z}[X]$. The element $1+3 X$ is invertible, since

$$
(1+3 X)(1-3 X)=1-9 X^{2}=1
$$

But, $1+3 X \notin \mathbb{Z} / 9 \mathbb{Z}$.
3. Which of the following polynomials is reducible in $\mathrm{Q}[X]$?
(a) $X^{5}-4 X+22$
(b) $7 x^{4}+25 X^{2}+15 X-10$
(c) $2 X^{4}+3 X^{3}+3 X^{2}-4$
(d) $5 X^{5}-6 X^{4}+12 X^{3}-6$

Solution: The correct answer is (c): use Eisenstein's criteria to show that the other polynomials are irreducible. Note that

$$
2 X^{4}+3 X^{3}+3 X^{2}-4=\left(2 X^{2}+X-2\right)\left(X^{2}+X+2\right) .
$$

4. The polynomial $X^{4}+4 X+1$ is
(a) reducible in $\mathbb{Q}[X]$.
(b) irreducible in $\mathbb{Q}[X]$.

Solution: Substituting $X+1$ for X, we obtain

$$
(X+1)^{4}+4(X+1)+1=X^{4}+4 X^{3}+6 X^{2}+8 X+6 .
$$

By Eisenstein's criterion for $p=2$ this is irreducible. Hence then correct answer is (b).
5. Which of the following statements is true?
(a) 7 is irreducible and prime in $\mathbb{Z}[\sqrt{-13}]$.
(b) 7 is irreducible but not prime in $\mathbb{Z}[\sqrt{-13}]$.
(c) 7 is neither irreducible nor prime in $\mathbb{Z}[\sqrt{-13}]$.
(d) 7 is prime but not irreducible in $\mathbb{Z}[\sqrt{-13}]$.

Solution: The correct answer is (b). Note that $7 \mid(1+\sqrt{-13})(1-\sqrt{-13})=2 \cdot 7$. To prove that 7 is irreducible, use the complex absolute value: from

$$
|(a+b \sqrt{-13})(c+d \sqrt{-13})|^{2}=\left(a^{2}+13 b^{2}\right) \cdot\left(c^{2}+13 d^{2}\right)=49
$$

for $a, b, c, d \in \mathbb{Z}$, we obtain that either $a+b \sqrt{-13}$ is a unit, $c+d \sqrt{-13}$ is a unit or $a^{2}+13 b^{2}=$ 7 (which is not solvable in \mathbb{Z}).

