Prof. Dr. Özlem Imamoglu

Solutions Single Choice 4

- 1. Let a,b be algebraic over \mathbb{Q} , such that $[\mathbb{Q}(a):\mathbb{Q}]=3$ and $[\mathbb{Q}(b):\mathbb{Q}]=5$. Then the possible degrees of $\mathbb{Q}(a,b)$ over \mathbb{Q} are
 - (a) [Q(a,b):Q] = 3
 - (b) [Q(a,b):Q] = 5
 - (c) $[\mathbb{Q}(a,b):\mathbb{Q}] = 15$
 - (d) All of the above.

Solution: The correct answer is (c): note that

$$[\mathbb{Q}(a,b):\mathbb{Q}] \leqslant [\mathbb{Q}(a):\mathbb{Q}][\mathbb{Q}(b):\mathbb{Q}] = 15$$

On the other hand, we have that because of multiplicativity of the degree of the field extention $\mathbb{Q}(a,b):\mathbb{Q}$ we have that $[\mathbb{Q}(a):\mathbb{Q}]=3$ and $[\mathbb{Q}(b):\mathbb{Q}]=5$ both divide $[\mathbb{Q}(a,b):\mathbb{Q}]$.

- **2**. Let $L: \mathbb{Q}$ be a field extention and $a, b \in L \setminus \{0\}$ such that $a + b \neq 0$. Which of the following statements is **false**?
 - (a) $a^2 \in \mathbb{Q}(a+b,ab) \Rightarrow a \in \mathbb{Q}(a+b,ab)$
 - (b) $a \in \mathbb{Q}(a+b,ab) \Rightarrow a^2 \in \mathbb{Q}(a+b,ab)$
 - (c) $[\mathbb{Q}(a,b):\mathbb{Q}(a+b,ab)]$ is equal to the degree of the minimal polynomial of a over $\mathbb{Q}(a+b,ab)$.
 - (d) All the statements above are true.

Solution: All the statements are true. Note that $a = \frac{a^2 + ab}{a + b}$, so that we get part (a). Further note that $\mathbb{Q}(a+b,ab) \subset \mathbb{Q}(a,b) = \mathbb{Q}(a+b,ab)(a) = \mathbb{Q}(a+b,ab)(b)$ and the polynomial $x^2 + (a+b)x + ab$ has roots a and b.

- 3. Let M:L:K be field extentions and assume that a is algebraic over M, L and K. Then
 - (a) $m_{a,M} \mid m_{a,L} \text{ in } M[x]$
 - (b) $m_{a,L} \mid m_{a,K} \text{ in } L[x]$
 - (c) $m_{a,M} \mid m_{a,K} \text{ in } M[x]$
 - (d) All the statements above are true.

Solution: (d) is the answer: see Lecture Cor.2.10.

- **4**. Consider a field extention $\mathbb{Q}(a,b):\mathbb{Q}$. Which of the following statements is **false**?
 - (a) If $\mathbb{Q}(a,b)$: \mathbb{Q} is algebraic, then also a and b are algebraic over \mathbb{Q} .
 - (b) If $\mathbb{Q}(a+b):\mathbb{Q}$ and $\mathbb{Q}(ab):\mathbb{Q}$ are algebraic, then also a and b are algebraic over \mathbb{Q} .

- (c) If a is transcendental over $\mathbb{Q}(b)$, then a is also transcendental over \mathbb{Q} .
- (d) If a is transcendental over \mathbb{Q} , then a is also transcendental over $\mathbb{Q}(b)$.

Solution: The answer is (d).

For (a) note this is true by definition of an algebraic extention. For (c), note that if a is algebraic over \mathbb{Q} , then a is also algebraic over $\mathbb{Q}(b)$. Taking the contrapositive of that yields part (c). For (b) note that a,b are the roots of the polynomial $x^2 + (a+b)x + ab$. Hence $[\mathbb{Q}(a):\mathbb{Q}(a+b,ab)] \leq 2$. Since $[\mathbb{Q}(a+b,ab):\mathbb{Q}] \leq [\mathbb{Q}(a+b):\mathbb{Q}][\mathbb{Q}(ab):\mathbb{Q}] < \infty$, we have that $[\mathbb{Q}(a):\mathbb{Q}] < \infty$. Hence a is algebraic over \mathbb{Q} . For a counter-example for part (d) take b := a.

- 5. Let a, b be algebraic over \mathbb{Q} , such that the minimal polynomial of a and b both have degree 2. Then the degree of the minimal polynomial of a + b is ...
 - (a) 2
 - (b) 4
 - (c) a divisor of 2
 - (d) a divisor of 4

Solution: The correct answer is (d). We have $[\mathbb{Q}(a,b):\mathbb{Q}(b)] \leq [\mathbb{Q}(a):\mathbb{Q}] = 2$, and hence $[\mathbb{Q}(a,b):\mathbb{Q}] = [\mathbb{Q}(a,b):\mathbb{Q}(b)][\mathbb{Q}(b):\mathbb{Q}]$ is a divisor of $2 \cdot 2 = 4$. Since $\mathbb{Q} \subset \mathbb{Q}(a+b) \subset \mathbb{Q}(a,b)$, and the multiplicativity of the degree of a field extention, we have that $[\mathbb{Q}(a+b):\mathbb{Q}]$ is a divisor of 4 as well.

Note that each divisor of 4 is possible:

If $a := \sqrt{2}$, $b := -\sqrt{2}$, then the minimal polynomial of a + b has degree 1. If $a := \sqrt{2}$, $b := \sqrt{2}$, then the minimal polynomial of a + b has degree 2. If $a := \sqrt{2}$, $b := \sqrt{3}$, then the minimal polynomial of a + b has degree 4.