Solutions Single Choice 4

1. Let a, b be algebraic over \mathbb{Q}, such that $[\mathbb{Q}(a): \mathbb{Q}]=3$ and $[\mathbb{Q}(b): \mathbb{Q}]=5$. Then the possible degrees of $\mathbb{Q}(a, b)$ over \mathbb{Q} are
(a) $[\mathrm{Q}(a, b): \mathbb{Q}]=3$
(b) $[\mathrm{Q}(a, b): \mathbb{Q}]=5$
(c) $[\mathrm{Q}(a, b): \mathbb{Q}]=15$
(d) All of the above.

Solution: The correct answer is (c): note that

$$
[\mathbb{Q}(a, b): \mathbb{Q}] \leqslant[\mathbb{Q}(a): \mathbb{Q}][\mathbb{Q}(b): \mathbb{Q}]=15
$$

On the other hand, we have that because of multiplicativity of the degree of the field extention $\mathrm{Q}(a, b): \mathbb{Q}$ we have that $[\mathrm{Q}(a): \mathbb{Q}]=3$ and $[\mathbb{Q}(b): \mathbb{Q}]=5$ both divide $[\mathbb{Q}(a, b): \mathbb{Q}]$.
2. Let L : \mathbb{Q} be a field extention and $a, b \in L \backslash\{0\}$ such that $a+b \neq 0$. Which of the following statements is false?
(a) $a^{2} \in \mathbb{Q}(a+b, a b) \Rightarrow a \in \mathbb{Q}(a+b, a b)$
(b) $\quad a \in \mathbb{Q}(a+b, a b) \Rightarrow a^{2} \in \mathbb{Q}(a+b, a b)$
(c) $[\mathrm{Q}(a, b): \mathrm{Q}(a+b, a b)]$ is equal to the degree of the minimal polynomial of a over $\mathrm{Q}(a+b, a b)$.
(d) All the statements above are true.

Solution: All the statements are true. Note that $a=\frac{a^{2}+a b}{a+b}$, so that we get part (a). Further note that $\mathbb{Q}(a+b, a b) \subset \mathbb{Q}(a, b)=\mathbb{Q}(a+b, a b)(a)=\mathbb{Q}(a+b, a b)(b)$ and the polynomial $x^{2}+(a+b) x+a b$ has roots a and b.
3. Let $M: L: K$ be field extentions and assume that a is algebraic over M, L and K. Then
(a) $m_{a, M} \mid m_{a, L}$ in $M[x]$
(b) $m_{a, L} \mid m_{a, K}$ in $L[x]$
(c) $m_{a, M} \mid m_{a, K}$ in $M[x]$
(d) All the statements above are true.

Solution: (d) is the answer: see Lecture Cor.2.10.
4. Consider a field extention $\mathbb{Q}(a, b): \mathbb{Q}$. Which of the following statements is false?
(a) If $\mathrm{Q}(a, b): \mathrm{Q}$ is algebraic, then also a and b are algebraic over \mathbb{Q}.
(b) If $\mathbb{Q}(a+b): \mathbb{Q}$ and $\mathbb{Q}(a b): \mathbb{Q}$ are algebraic, then also a and b are algebraic over \mathbb{Q}.
(c) If a is transcendental over $\mathbb{Q}(b)$, then a is also transcendental over \mathbb{Q}.
(d) If a is transcendental over \mathbb{Q}, then a is also transcendental over $\mathbb{Q}(b)$.

Solution: The answer is (d).
For (a) note this is true by definition of an algebraic extention. For (c), note that if a is algebraic over \mathbb{Q}, then a is also algebraic over $\mathbb{Q}(b)$. Taking the contrapositive of that yields part (c). For (b) note that a, b are the roots of the polynomial $x^{2}+(a+b) x+a b$. Hence $[\mathrm{Q}(a): \mathbb{Q}(a+b, a b)] \leqslant 2$. Since $[\mathbb{Q}(a+b, a b): \mathbb{Q}] \leqslant[\mathbb{Q}(a+b): \mathbb{Q}][\mathbb{Q}(a b): \mathbb{Q}]<\infty$, we have that $[\mathrm{Q}(a): \mathbb{Q}]<\infty$. Hence a is algebraic over Q. For a counter-example for part (d) take $b:=a$.
5. Let a, b be algebraic over \mathbb{Q}, such that the minimal polynomial of a and b both have degree 2 . Then the degree of the minimal polynomial of $a+b$ is ...
(a) 2
(b) 4
(c) a divisor of 2
(d) a divisor of 4

Solution: The correct answer is (d). We have $[\mathbb{Q}(a, b): \mathbb{Q}(b)] \leqslant[\mathbb{Q}(a): \mathbb{Q}]=2$, and hence $[\mathbb{Q}(a, b): \mathbb{Q}]=[\mathbb{Q}(a, b): \mathbb{Q}(b)][\mathbb{Q}(b): \mathbb{Q}]$ is a divisor of $2 \cdot 2=4$. Since $\mathbb{Q} \subset \mathbb{Q}(a+b) \subset$ $\mathrm{Q}(a, b)$, and the multiplicativity of the degree of a field extention, we have that $[\mathrm{Q}(a+b): \mathbb{Q}]$ is a divisor of 4 as well.

Note that each divisor of 4 is possible:
If $a:=\sqrt{2}, b:=-\sqrt{2}$, then the minimal polynomial of $a+b$ has degree 1 . If $a:=\sqrt{2}$, $b:=\sqrt{2}$, then the minimal polynomial of $a+b$ has degree 2 . If $a:=\sqrt{2}, b:=\sqrt{3}$, then the minimal polynomial of $a+b$ has degree 4 .

