Solutions Single Choice 5

1. Let K be a field. Which of the following statements are true?
(a) Every algebraic extension L of K is a finite extension.
(b) Every finite extension L of K is an algebraic extension.
(c) The extension $\mathrm{Q}(\exp (2 \pi i / 1234))$: Q is not algebraic.
(d) All of the above are false.

Solution: The answer is (b); which we have seen in the lectures. For part (a) note that for example the algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} is infinite. Since $\exp (2 \pi i / 1234)^{1234}=1$, the element $\exp (2 \pi i / 1234)$ is algebraic over \mathbb{Q} with minimal polynomial

$$
\Phi_{1234}(X)=\prod_{n}\left(X-\exp (2 \pi i / 1234)^{n}\right),
$$

where the product is taken over all $1 \leqslant n \leqslant 1233$ such that $\operatorname{gcd}(n, 1234)=1$.
2. How many subfields F of $\mathbb{Q}(\sqrt[4]{3}, i)$ exist such that $[F: \mathbb{Q}]=4$?
(a) $\geqslant 3$
(b) 2
(c) 1
(d) 0

Solution: The answer is (a) and by explicit calculation we get that the fields $\mathbb{Q}(i \sqrt[4]{3}), \mathbb{Q}(\sqrt{3}, i)$ and $\mathbb{Q}(\sqrt[4]{3})$ all have degree 4 over \mathbb{Q}.
3. Which of the following fields are not subfields F of $\mathbb{Q}(\sqrt[4]{3}, i)$ such that $[F: \mathbb{Q}]=2$?
(a) $\mathbb{Q}(i)$
(b) $\mathrm{Q}(i \sqrt{3})$
(c) $\mathrm{Q}(i+\sqrt{3})$
(d) $\mathrm{Q}(\sqrt{3})$

Solution: The answer is (c): we will show that the minimal polynomial of $i+\sqrt{3}$ has degree >2, which implies that the degree of the field extension would be greater than 2 as well. Compute:

$$
\begin{aligned}
(\sqrt{3}+i)^{2}=2+2 i \sqrt{3} & \Longleftrightarrow(\sqrt{3}+i)^{2}-2=2 i \sqrt{3} \quad(\in \mathbb{C} \backslash \mathbb{R}) \\
& \Longleftrightarrow\left((\sqrt{3}+i)^{2}-2\right)^{2}+12=0,
\end{aligned}
$$

so the minimal polynomial of $\sqrt{3}+i$ is $X^{4}-4 X^{2}+16$, which has degree 4 .
4. Which of the following statements are true?
(a) π is algebraic over $\mathbb{Q}\left(\pi^{3}\right)$
(b) The fields $\mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{5})$ are not isomorphic as fields.
(c) The fields $\mathbb{Q}(\sqrt[4]{3})$ and $\mathbb{Q}(i \sqrt[4]{3})$ are isomorphic as fields.
(d) All statements above are true.

Solution: All the statements above are true. π gets annihilated by the polynomial $x^{3}-\pi^{3}$ over $\mathbb{Q}\left(\pi^{3}\right)$. For part (b) see Exercise sheet 4. The field $\mathbb{Q}(\sqrt[4]{3})$ is obtained by adjoining a root of $X^{4}-3$ to \mathbb{Q}. The same is true for $\mathbb{Q}(i \sqrt[4]{3})$. Thus the two fields are isomorphic, with an isomorphism determined by sending $\sqrt[4]{3}$ to $i \sqrt[4]{3}$.
5. Which of the following statements are false?
(a) $[\mathrm{Q}(\sqrt{3}, \sqrt{6}): \mathrm{Q}]=4$
(b) $[\mathrm{Q}(\sqrt{3}+\sqrt{7}): \mathrm{Q}(\sqrt{3})]=4$
(c) $\mathrm{Q}(\sqrt{3}+\sqrt{7})=\mathrm{Q}(\sqrt{3}, \sqrt{7})$
(d) $[\mathrm{Q}(\sqrt{2}, \sqrt[3]{2}): \mathrm{Q}]=6$

Solution: The correct answer is (b). For part (a), we have

$$
\mathrm{Q}(\sqrt{3}, \sqrt{6})=\mathrm{Q}(\sqrt{3}, \sqrt{2} \sqrt{3})=\mathrm{Q}(\sqrt{3}, \sqrt{2})
$$

and we have seen in the lectures that the degree of this field extension is 4 .
Note that $\mathbb{Q}(\sqrt{3}+\sqrt{7})=\mathbb{Q}(\sqrt{3}, \sqrt{7})$: it is clear that $\mathbb{Q}(\sqrt{3}+\sqrt{7}) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{7})$. Moreover, $\sqrt{3}+\sqrt{7}$ has minimal polynomial of degree 4 , so that $[\mathbb{Q}(\sqrt{3}+\sqrt{7}): \mathbb{Q}]=4$. But note that $[\mathrm{Q}(\sqrt{3}, \sqrt{7}): \mathrm{Q}]=4$, which means that the two fields must be equal. This implies $[\mathbb{Q}(\sqrt{3}+\sqrt{7}): \mathbb{Q}(\sqrt{3})]=2$.
For part (d), we can use the multiplicativity of the field degree as the field degrees $[Q(\sqrt{2})$: $\mathbb{Q}]$ and $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]$ are coprime:

$$
[\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}): \mathbb{Q}] \cdot[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=2 \cdot 3=6
$$

