Solutions Single Choice 6

- 1. Which of the fields below are a splitting field of the polynomial $X^4 3$ over \mathbb{Q} ?
 - (a) $\mathbb{Q}(\sqrt[4]{3}, i)$
 - (b) $\mathbb{Q}(\sqrt[4]{3}, i\sqrt[4]{3})$
 - (c) $\mathbb{Q}(\sqrt[4]{3}, i\sqrt[2]{3})$
 - (d) All of the above.

Solution: The correct answer is (d). By Eisenstein's criterion, the polynomial X^4-3 is irreducible over $\mathbb Q$. It has zeros $\pm \sqrt[4]{3}$ and $\pm i\sqrt[4]{3}$. Hence (b) is correct. Compute $i=i\sqrt[4]{3}/\sqrt[4]{3}=i\sqrt[2]{3}/(\sqrt[4]{3})^2$, so that all the fields above are equal to each other.

- **2**. Let *K* be a field. Which of the following statements is **false**?
 - (a) If K has no proper algebraic extensions, then every non-constant polynomial $f \in K[X]$ has at least one root in K.
 - (b) If each irreducible polynomial $f \in K[X]$ is linear, then K is algebraically closed.
 - (c) If K_1 and K_2 are algebraic closures of K, then K_1 and K_2 are isomorphic over K.
 - (d) If K contains a subfield which is algebraically closed, then K is algebraically closed as well.

Solution: The answer is (d): consider $\mathbb{C}(X)$. Then $\mathbb{C}(X)$ contains \mathbb{C} , which is algebraically closed, but the polynomial $Y^2 - X$ has no zeros in $\mathbb{C}(X)$. For (a) and (b) see theorem 2.21, for (c), see theorem 2.23.

- 3. Which field extension is normal?
 - (a) $\mathbb{F}_2(X) : \mathbb{F}_2(X^3)$
 - (b) $\mathbb{F}_5(X) : \mathbb{F}_5(X^5)$
 - (c) $\mathbb{Q}(\sqrt[4]{5}):\mathbb{Q}$
 - (d) $\mathbb{R}:\mathbb{Q}$

Solution: Since $Y^5-X^5=(Y-X)^5\in \mathbb{F}_5(X)[Y]$, we have that $\mathbb{F}_5(X)$ is a splitting field of Y^5-X^5 over $\mathbb{F}_5(X^5)$. Thus $\mathbb{F}_5(X):\mathbb{F}_5(X^5)$ is normal and (b) is correct.

The polynomial $Y^3-X^3\in\mathbb{F}_2(X^3)[Y]$ has no zeros and is hence irreducible. Let $a\in\mathbb{F}_2(X)$ be a zero of Y^3-X^3 . Let $f,g\in\mathbb{F}_2[X]$ be monomials such that a=f/g, and $g\neq 0$. Then $f^3-X^3g^3=0$, and it follows that the constant coefficient of f is zero. Write $f=X\cdot \tilde{f}$, for some $\tilde{f}\in\mathbb{F}_2[X]$, so that $X^3\tilde{f}^3-X^3g^3=0$ and thus $\tilde{f}^3=g^3$. Then $\tilde{f}=g$ and so g=X. Hence the polynomial $f=X^3$ 0 only has the zero $f=X^3$ 1.

On the other hand we have

$$(Y - X)^3 = Y^3 - Y^2X + YX^2 - X^3 \neq Y^3 - X^3.$$

Hence the polynomial $Y^3 - X^3$ does not split into linear factors over $\mathbb{F}_2(X)[Y]$, and the field extension is not normal.

The irreducible polynomial X^4-5 has a zero in both $\mathbb{Q}(\sqrt[4]{5})$ and \mathbb{R} , but since it has complex zeros as well, it does not split into linear factors.

- **4**. The statement: The field extension $\mathbb{Q}(\sqrt{2+\sqrt{2}}):\mathbb{Q}$ is normal, is...
 - (a) true
 - (b) false

Solution: This is true. To show that $\mathbb{Q}(\sqrt{2+\sqrt{2}}):\mathbb{Q}$ is normal, we have to show that all the roots of the minimal polynomial of $\sqrt{2+\sqrt{2}}$ lie in $\mathbb{Q}(\sqrt{2+\sqrt{2}})$. The minimal polynomial is given by $(X^2-2)^2-2$, so the roots are given by

$$a_1 = \sqrt{2 + \sqrt{2}}$$

$$a_2 = \sqrt{2 - \sqrt{2}}$$

$$a_3 = -\sqrt{2 + \sqrt{2}}$$

$$a_4 = -\sqrt{2 - \sqrt{2}}$$

Now note that $a_1^2 - 2 = \sqrt{2}$ and $a_1 a_2 = \sqrt{2}$, so that we can obtain a_2 from a_1 . This proves the statement.

- **5**. Over which field is the polynomial $X^3 + 1$ separable?
 - (a) Q
 - (b) \mathbb{R}
 - (c) \mathbb{F}_5
 - (d) All of the above.

Solution: The correct answer is (d).

Over \mathbb{Q} , this polynomial is separable since it has complex zeros $-1, \frac{1}{2} + \frac{i\sqrt{3}}{2}, \frac{1}{2} - \frac{i\sqrt{3}}{2}$. Similarly over \mathbb{R} .

Checking all elements in \mathbb{F}_5 , we see that the polynomial X^3+1 has no zeros in \mathbb{F}_5 . Hence it is irreducible, as the polynomial has degree 3 (if it was reducible, there would be at least one linear term). Since the derivative does not vanish, we obtain that the polynomial is separable over \mathbb{F}_5 .

2