Solutions Single Choice 7

- 1. Which of the following rings is not isomorphic to the others?
 - (a) $\mathbb{F}_3[X]/(X^2 + X + 2)$
 - (b) $\mathbb{F}_3[X]/(X^2+2X+2)$
 - (c) $\mathbb{F}_3[X]/(X^2+X+1)$
 - (d) \mathbb{F}_9

Solution: The solution if (c). The polynomial $X^2 + X + 2$ is irrecucible over \mathbb{F}_3 : none of the elements of \mathbb{F}_3 are a zero and since the polynomial has degree 2 it is irreducible. Hence we know from the lectures that $\mathbb{F}_3[X]/(X^2 + X + 2)$ is a finite field. All the elements of $\mathbb{F}_3[X]/(X^2 + X + 2)$ are polynomials of degree < 2 with coefficients in \mathbb{F}_3 , so there are in total 9 elements in $\mathbb{F}_3[X]/(X^2 + X + 2)$. Hence $\mathbb{F}_3[X]/(X^2 + X + 2) \cong \mathbb{F}_9$.

Similarly, the polynomial $X^2 + 2X + 2$ has no zeros in \mathbb{F}_3 and since it has degree 2 it is irreducible over \mathbb{F}_3 . A similar argument as before shows that $\mathbb{F}_3[X]/(X^2 + 2X + 2) \cong \mathbb{F}_9$.

For the last polynomial, note that $X^2 + X + 1 = (X+2)^2$, so it is reducible and not an integral domain: note that $\overline{0} \neq \overline{X+2} \in \mathbb{F}_3[X]/(X^2+X+1)$, but

$$\overline{(X+2)} \cdot \overline{(X+2)} = \overline{X^2 + X + 1} = \overline{0}.$$

- **2**. How many irreducible factors does the polynomial $X^9 X$ have over \mathbb{F}_3 ?
 - (a) 2
 - (b) 4
 - (c) 6
 - (d) 9

Solution: The answer is (c). The polynomial $X^9 - X$ is separable over \mathbb{F}_3 , so it does not have multiple irreducible factors. The irreducible factors of degree 1 are the zeros in \mathbb{F}_3 , so 0, 1 and 2 (note that $2^8 - 1 = 256 - 1 \equiv 0 \pmod{3}$).

Next we consider the irreducible factors of degree > 1. Let f(X) be such a factor. From the lectures we know that the splitting field of $X^9 - X$ has degree 2 over \mathbb{F}_3 . If a is a zero of f, then $[\mathbb{F}_3(a):\mathbb{F}_3] \mid 2$, so $\deg(f) = [\mathbb{F}_3(a):\mathbb{F}_3] = 2$. Since $9 = 3 \cdot 1 + 3 \cdot 2$, the polynomial $X^9 - X$ has 3 irreducible factors of degree 2 and 3 of degree 1, alltogether 6.

- 3. Which of the following elements is a generator of \mathbb{F}_{19}^{\times}
 - (a) $\overline{1}$
 - (b) $\bar{3}$
 - (c) 7
 - (d) <u>9</u>

Solution: The answer is (b). The group \mathbb{F}_{19}^{\times} is cyclic of order 18. Hence the element $\overline{1}$ is not a generator. Note that $\overline{7}^3 = \overline{1}$, so it has order less than 18. On the other hand, $(\overline{3}^3)^2 = \overline{8}^2 = \overline{7} \neq 1$, and hence $\overline{3}^9 = -\overline{1}$, so that $\overline{3}$ has order 18 and is a generator. Since $\overline{3}^2 = \overline{9}$, the element $\overline{9}$ has order 9.

- 4. Let p be a prime number. Which of the following statements are false?
 - (a) There exists a field of order p^p .
 - (b) If $F : \mathbb{F}_{p^p}$ is a finite field extension, then $F : \mathbb{F}_{p^p}$ is simple.
 - (c) The unit group $\overline{\mathbb{F}}_p^{\times}$ is cyclic.
 - (d) If a field F is a splitting field of $X^{p^p} X \in \mathbb{F}_p[X]$ over \mathbb{F}_p , then F has p^p elements.

Solution: Statement (c) is false: Each element of $\overline{\mathbb{F}}_p^{\times}$ lies in a finite field extension of \mathbb{F}_p , so it also lies in a finite field. Hence it generates a finite subgroup of $\overline{\mathbb{F}}_p^{\times}$. But since $\overline{\mathbb{F}}_p$ is not finite, there does not exist an element generating its whole unit group. The remaining parts were done in the lecture (where we replaced p^n by p^p).

- **5**. How many irreducible polynomials of degree 2 are there over \mathbb{F}_2 ?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4

Solution: There is only one, namely $X^2 + X + 1$. By checking that none of the elements of \mathbb{F}_2 is a zero, we conclude that it is irreducible.

Assume there is another one: say $aX^2 + bX + c$, with $a, b, c \in \mathbb{F}_2$ and $a \neq 0$ is irreducible. Then c = 1, as otherwise we could factor X out. If b = 0 then $X^2 + 1 = (X + 1)^2$.