Solutions Single Choice 7

1. Which of the following rings is not isomorphic to the others?
(a) $\mathrm{F}_{3}[X] /\left(X^{2}+X+2\right)$
(b) $\mathrm{F}_{3}[X] /\left(X^{2}+2 X+2\right)$
(c) $\mathrm{F}_{3}[X] /\left(X^{2}+X+1\right)$
(d) \mathbb{F}_{9}

Solution: The solution if (c). The polynomial $X^{2}+X+2$ is irrecucible over \mathbb{F}_{3} : none of the elements of \mathbb{F}_{3} are a zero and since the polynomial has degree 2 it is irreducible. Hence we know from the lectures that $\mathbb{F}_{3}[X] /\left(X^{2}+X+2\right)$ is a finite field. All the elements of $\mathrm{F}_{3}[X] /\left(X^{2}+X+2\right)$ are polynomials of degree <2 with coefficients in \mathbb{F}_{3}, so there are in total 9 elements in $\mathbb{F}_{3}[X] /\left(X^{2}+X+2\right)$. Hence $\mathbb{F}_{3}[X] /\left(X^{2}+X+2\right) \cong \mathbb{F}_{9}$.
Similarly, the polynomial $X^{2}+2 X+2$ has no zeros in \mathbb{F}_{3} and since it has degree 2 it is irreducible over \mathbb{F}_{3}. A similar argument as before shows that $\mathbb{F}_{3}[X] /\left(X^{2}+2 X+2\right) \cong \mathbb{F}_{9}$.
For the last polynomial, note that $X^{2}+X+1=(X+2)^{2}$, so it is reducible and not an integral domain: note that $\overline{0} \neq \overline{X+2} \in \mathbb{F}_{3}[X] /\left(X^{2}+X+1\right)$, but

$$
\overline{(X+2)} \cdot \overline{(X+2)}=\overline{X^{2}+X+1}=\overline{0} .
$$

2. How many irreducible factors does the polynomial $X^{9}-X$ have over \mathbb{F}_{3} ?
(a) 2
(b) 4
(c) 6
(d) 9

Solution: The answer is (c). The polynomial $X^{9}-X$ is separable over \mathbb{F}_{3}, so it does not have multiple irreducible factors. The irreducible factors of degree 1 are the zeros in \mathbb{F}_{3}, so 0,1 and $2\left(\right.$ note that $2^{8}-1=256-1 \equiv 0(\bmod 3)$).

Next we consider the irreducible factors of degree >1. Let $f(X)$ be such a factor. From the lectures we know that the splitting field of $X^{9}-X$ has degree 2 over \mathbb{F}_{3}. If a is a zero of f, then $\left[\mathbb{F}_{3}(a): \mathbb{F}_{3}\right] \mid 2$, so $\operatorname{deg}(f)=\left[\mathbb{F}_{3}(a): \mathbb{F}_{3}\right]=2$. Since $9=3 \cdot 1+3 \cdot 2$, the polynomial $X^{9}-X$ has 3 irreducible factors of degree 2 and 3 of degree 1 , alltogether 6 .
3. Which of the following elements is a generator of \mathbb{F}_{19}^{\times}
(a) $\overline{1}$
(b) $\overline{3}$
(c) $\overline{7}$
(d) $\overline{9}$

Solution: The answer is (b). The group \mathbb{F}_{19}^{\times}is cyclic of order 18 . Hence the element $\overline{1}$ is not a generator. Note that $\overline{7}^{3}=\overline{1}$, so it has order less than 18 . On the other hand, $\left(\overline{3}^{3}\right)^{2}=\overline{8}^{2}=$ $\overline{7} \neq 1$, and hence $\overline{3}^{9}=-\overline{1}$, so that $\overline{3}$ has order 18 and is a generator. Since $\overline{3}^{2}=\overline{9}$, the element $\overline{9}$ has order 9 .
4. Let p be a prime number. Which of the following statements are false?
(a) There exists a field of order p^{p}.
(b) If $F: \mathbb{F}_{p^{p}}$ is a finite field extension, then $F: \mathbb{F}_{p^{p}}$ is simple.
(c) The unit group $\overline{\mathbb{F}}_{p}^{\times}$is cyclic.
(d) If a field F is a splitting field of $X^{p^{p}}-X \in \mathbb{F}_{p}[X]$ over \mathbb{F}_{p}, then F has p^{p} elements.

Solution: Statement (c) is false: Each element of $\overline{\mathrm{F}}_{p}^{\times}$lies in a finite field extension of F_{p}, so it also lies in a finite field. Hence it generates a finite subgroup of $\overline{\mathbb{F}}_{p} \times$. But since $\overline{\mathrm{F}}_{p}$ is not finite, there does not exist an element generating its whole unit group. The remaining parts were done in the lecture (where we replaced p^{n} by p^{p}).
5. How many irreducible polynomials of degree 2 are there over \mathbb{F}_{2} ?
(a) 1
(b) 2
(c) 3
(d) 4

Solution: There is only one, namely $X^{2}+X+1$. By checking that none of the elements of F_{2} is a zero, we conclude that it is irreducible.
Assume there is another one: say $a X^{2}+b X+c$, with $a, b, c \in \mathbb{F}_{2}$ and $a \neq 0$ is irreducible. Then $c=1$, as otherwise we could factor X out. If $b=0$ then $X^{2}+1=(X+1)^{2}$.

