Solutions Single Choice 8

1. Which of the following statements is true for the Galois group $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q})$?
(a) $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}$
(b) $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
(c) $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}) \cong S_{4}$
(d) None of the above.

Solution: The field extension is a splitting field of the polynomial $f(X)=\left(X^{2}-3\right)\left(X^{2}+1\right)$ over \mathbf{Q}. The Galois group permutes the roots of f, so if $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i)$: $\mathbb{Q})$, then $\sigma(\sqrt{3})= \pm \sqrt{3}$ and $\sigma(i)= \pm i$. Note that $\{1, i, \sqrt{3}, i \sqrt{3}\}$ form a basis of $\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}$, so there are 4 possibilities for $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q})$:

$$
\begin{aligned}
\sigma_{j, k}: \sqrt{3} & \mapsto(-1)^{j} \sqrt{3} \\
& i \mapsto(-1)^{k} i,
\end{aligned}
$$

for $j, k \in\{0,1\}$. Note that $\sigma_{j, k}^{2}=1$, for all j, k, so that $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
2. Let $H \leqslant \operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q})$ be a subgroup of order 2, i.e. $|H|=2$. Then the fixed field $\mathrm{Q}(\sqrt{3}, i)^{H}$ is only given by...
(a) $\mathrm{Q}(i)$.
(b) the fields $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{3})$.
(c) the fields $\mathbb{Q}(i), \mathbb{Q}(i \sqrt{3})$ and $\mathbb{Q}(\sqrt{3})$.
(d) the fields $\mathbb{Q}, \mathbb{Q}(i), \mathbb{Q}(i \sqrt{3})$ and $\mathbb{Q}(\sqrt{3})$.

Solution: The correct answer is (c). From the solution of Exercise 1, we know that there exist 4 elements in $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i): \mathbb{Q})$:

$$
\begin{aligned}
\sigma_{j, k}: \sqrt{3} & \mapsto(-1)^{j} \sqrt{3} \\
i & \mapsto(-1)^{k} i,
\end{aligned}
$$

for $j, k \in\{0,1\}$, where 3 of them have the order 2 , so each of those generate a group of order 2. We can compute

$$
\mathbb{Q}(\sqrt{3}, i)^{\left\langle\sigma_{1,0}\right\rangle}=\left\{a \in \mathbb{Q}(\sqrt{3}, i): \sigma_{1,0}=a\right\} \supset \mathbb{Q}(\sqrt{i}),
$$

but also $\mathrm{Q}(\sqrt{3}, i)^{\left\langle\sigma_{1,0}\right\rangle} \neq \mathbb{Q}(\sqrt{3}, i)$, as $\sigma_{1,0}(\sqrt{3})=-\sqrt{3}$, and by considerng the degrees of the extensions, we get $\mathbb{Q}(\sqrt{3}, i)^{\left\langle\sigma_{1,0}\right\rangle}=\mathbb{Q}(\sqrt{3})$. Similarly we can argue in the other cases.
3. Between which field extensions does there exist a field homomorphism over \mathbb{Q} ?
(a) $\mathbb{Q}(i) \rightarrow \mathbb{Q}(\pi)$
(b) $\mathrm{Q}(\sqrt[3]{9}) \rightarrow \mathrm{Q}(\sqrt[3]{3})$
(c) $\mathrm{Q}(i) \rightarrow \mathrm{Q}(\sqrt{3})$
(d) $\mathbb{Q}(\sqrt{3}) \rightarrow \mathbb{Q}(\sqrt[3]{3})$

Solution: The correct answer is (b). The field $\mathbb{Q}(\sqrt[3]{9})$ is contained in $\mathbb{Q}(\sqrt[3]{3})$, so we can take the inclusion. For (a), note that i is algebraic over \mathbb{Q}, while π is transcendental. For part (c), note that there is no homomorphism $\mathbb{Q}(i) \rightarrow \mathbb{R}$, and since $\mathbb{Q}(\sqrt{3}) \subset \mathbb{R}$, this cannot exist as well. Finally, for part (d) note that $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2$, while $[\mathbb{Q}(\sqrt[3]{3}): \mathbb{Q}]=3$, and since these are coprime there cannot exist a homomorphism between them.
4. The order of the Galois group $\operatorname{Gal}\left(\mathbb{F}_{27}: \mathbb{F}_{3}\right)$ is
(a) 1
(b) 2
(c) 3
(d) 4

Solution: The correct answer is (c). From the lectures we know that $\operatorname{Gal}\left(\mathbb{F}_{27}: \mathbb{F}_{3}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$.
5. Which of the following statements are false?
(a) Let $L: M: K$ be field extensions. Then $\operatorname{Gal}(L: M) \leqslant \operatorname{Gal}(L: K)$.
(b) Let L be a splitting field of a polynomial over K. Then $|\operatorname{Gal}(L: K)|=[L: K]$.
(c) For L : K a finite field extension, there exists $n \geqslant 1$ and an embedding $\operatorname{Aut}_{K}(L) \hookrightarrow$ S_{n}.
(d) $\operatorname{Gal}\left(\mathbb{F}_{2^{2}}: \mathbb{F}_{2}\right)$ is generated by the homomorphism $\mathbb{F}_{2^{2}} \rightarrow \mathbb{F}_{2^{2}}, x \mapsto x^{2}$.

Solution: Part (b) is true only if f is separable; see Theorem 3.5 from the lectures. Further, since $\left|\operatorname{Aut}_{K}(L)\right| \leqslant[L: K]$, the group $\operatorname{Aut}_{K}(L)$ is finite, so there exists an embedding as in part (c). For part (d) see Cor. 3.7.

