Solutions Single Choice 9

1. The order of the Galois group $|\operatorname{Gal}(\mathbb{Q}(\sqrt{7}, \sqrt{11}): \mathbb{Q})|$ is equal to
(a) 2
(b) 4
(c) 6
(d) 8

Solution: The correct answer is (b). The field $\mathbb{Q}(\sqrt{7}, \sqrt{11})$ is the splitting field of the polynomial $f(x):=\left(x^{2}-7\right)\left(x^{2}-11\right)$ over \mathbb{Q}. The Galois group permutes the roots of f, so if $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{7}, \sqrt{11}$ there are 4 possibilities for σ :

$$
\begin{aligned}
\sigma_{j, k}: & \sqrt{7} \mapsto(-1)^{j} \sqrt{7} \\
& \sqrt{11}
\end{aligned}>(-1)^{k} \sqrt{11}, ~ \$
$$

for $j, k \in\{0,1\}$. Note that $\sigma_{j, k}^{2}=1$, for all j, k, so that $\operatorname{Gal}(\mathbb{Q}(\sqrt{7}, \sqrt{11}): \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times$ $\mathbb{Z} / 2 \mathbb{Z}$.
2. Let $\alpha:=\sqrt{7}+\sqrt{11}$. Let $\alpha_{0}, \ldots, \alpha_{r}$ be the images of α under all the automorphisms of $\operatorname{Aut}(\mathbb{Q}(\sqrt{7}, \sqrt{11}): \mathbb{Q})$. Then the product $\alpha_{0} \cdots \alpha_{r}$ is equal to
(a) -4
(b) $18+\sqrt{7 \cdot 11}$
(c) $18-\sqrt{7 \cdot 11}$
(d) 16

Solution: The correct answer is (d). Using the automorphisms of $\operatorname{Gal}(\mathbb{Q}(\sqrt{7}, \sqrt{11}): \mathbb{Q})$ we determined above, we get

$$
\begin{aligned}
& \alpha_{0}:=\sigma_{0,0}(\alpha)=\sqrt{7}+\sqrt{11} \\
& \alpha_{1}:=\sigma_{1,0}(\alpha)=-\sqrt{7}+\sqrt{11} \\
& \alpha_{2}:=\sigma_{0,1}(\alpha)=\sqrt{7}-\sqrt{11} \\
& \alpha_{3}:=\sigma_{1,1}(\alpha)=-\sqrt{7}-\sqrt{11}
\end{aligned}
$$

Hence $\alpha_{0} \cdots \alpha_{3}=16$.
3. Which of the following fields is not normal over \mathbb{Q} ?
(a) $\mathrm{Q}(\sqrt{11}, \sqrt{13})$
(b) $\mathrm{Q}\left(e^{2 \pi i / 11}\right)$
(c) $\mathrm{Q}\left(2^{1 / 11}\right)$
(d) $\mathrm{Q}(\sqrt{11+\sqrt{13}}, \sqrt{11-\sqrt{13}})$

Solution: The correct answer is (c). The field $\mathbb{Q}(\sqrt{11}, \sqrt{13})$ is the splitting field field of the polynomial $\left(x^{2}-11\right)\left(x^{2}-13\right)$ over \mathbb{Q}, and since $\pm \sqrt{11}, \pm \sqrt{13} \in \mathbb{Q}(\sqrt{11}, \sqrt{13})$, it is normal. The field $\mathbb{Q}\left(e^{2 \pi i / 11}\right)$ is the splitting field of the polynomial $x^{11}-1$ over \mathbb{Q}. Since all the zeros of this polynomial are powers of $e^{2 \pi i / 11}$, and thus contained in $\mathbb{Q}\left(e^{2 \pi i / 11}\right)$, it is normal.
The element $2^{1 / 11}$ is a zero of the polynomial $x^{11}-2$, which is irreducible by Eisenstein. Note that the none of the complex roots of the polynomial $x^{1} 1-2$ are contained in the real field $\mathbb{Q}\left(2^{1 / 11}\right)$. Hence it is not normal.
The elements $\sqrt{11+\sqrt{13}}, \sqrt{11-\sqrt{13}}$ are zeros of the polynomial $f(x)=\left(x^{2}-11\right)^{2}-13$. Since the other two zeros of $f(x)$ are given by $-\sqrt{11+\sqrt{13}},-\sqrt{11-\sqrt{13}}$, we obtain that $\mathrm{Q}(\sqrt{11+\sqrt{13}}, \sqrt{11-\sqrt{13}})$ is normal.
4. The subgroup $H \leqslant \operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$: $\mathbb{Q})$ for which

$$
\mathrm{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})^{H}=\mathrm{Q}(\sqrt{30})
$$

is isomorphic to
(a) $\mathbb{Z} / 2 \mathbb{Z}$
(b) $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
(c) $\mathbb{Z} / 4 \mathbb{Z}$
(d) $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$

Solution: The correct answer is (b). The field $L:=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is the splitting field of the polynomial $f(x):=\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$ over \mathbb{Q}. The Galois group $G:=$ $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q})$ permutes the zeros of f, so that for $\sigma \in G$ we have

$$
\begin{aligned}
& \sigma(\sqrt{2})= \pm \sqrt{2} \\
& \sigma(\sqrt{3})= \pm \sqrt{3} \\
& \sigma(\sqrt{5})= \pm \sqrt{5}
\end{aligned}
$$

so that the group G has 8 automorphism of order 2 , determined by the images of $\sqrt{2}, \sqrt{3}$ and $\sqrt{5}$. Hence $G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Further, note that $[\mathbb{Q}(\sqrt{30}): \mathbb{Q}]=2$, as $\sqrt{30}$ is a zero of the degree 2 polynomial $x^{2}-30$. Then from Corollary 3.12 we have

$$
|H|=\frac{[L: \mathbb{Q}]}{\left[L^{H}: \mathbb{Q}\right]}=\frac{8}{2}=4 .
$$

The only subgroup of order 4 in G is $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
5. Let $L: K$ be a finite Galois extension, such that $G=\operatorname{Gal}(L: K) \cong \mathbb{Z} / 6 \mathbb{Z}$. Let H be a subgroup of G of order 2 , and Q be a subgroup of G of order 3 . Which of the following statements is false?
(a) $\left[L^{H}: K\right]=\frac{[L: K]}{3}$
(b) $[L: K]=6$
(c) $L^{H} \neq L^{Q}$
(d) $L: K$ is separable.

Solution: The correct answer is (a). This is false; by Corollary 3.12 we would have

$$
\left[L^{H}: K\right]=\frac{[L: K]}{|H|}=\frac{[L: K]}{2} .
$$

We have seen in the lectures that $\operatorname{Gal}(L: K)=[L: K]$ for finite Galois extensions, so (b) follows. Part (c) follows from Corollary 3.11. Part (d) follows from Theorem 4.2.

