Solutions Exercise sheet 0

1. Let K be a field, \mathcal{I} be a set of indices and for every $i \in \mathcal{I}$ let $K_{i} \subset K$ be a subfield. Show that $\bigcap_{i \in \mathcal{I}} K_{i}$ is a subfield of K.
Solution: Set $K^{\prime}:=\bigcap_{i \in \mathcal{I}} K_{i}$. For each $i \in \mathcal{I}$ we have that $1 \in K_{i}$, so $1 \in K^{\prime}$. Let $a, b, c \in K^{\prime}$ be arbitrary elements with $c \neq 0$. For each $i \in \mathcal{I}$ we have that $a, b, c \in K_{i}$, and since K_{i} is a subfield of K, we have that $a+b, a b,-a, c^{-1}$ are again elements of K_{i}. Since i was arbitrary, we have that all those elements lie in K^{\prime}. Hence K^{\prime} is a subfield of K.
2. Decide which of the following quotient rings are isomorphic to each other:
(a) $\quad R_{1}:=\mathbb{R}[X, Y] /\left(X^{2}\right)$
(b) $\quad R_{2}:=\mathbb{R}[X, Y, Z] /(X, Y)$
(c) $\quad R_{3}:=\mathbb{R}[X, Y, Z] /\left(Y^{2}, X+Z\right)$
(d) $R_{4}:=\mathbb{R}[X, Y] /(X+Y)$
(e) $\quad R_{5}:=\mathbb{R}[X, Y, Z] /(X Y)$
(f) $\quad R_{6}:=\mathbb{R}[X, Y, Z] /(X Y+2 X+Y+2)$

Solution: We will analyze the properties of each ring separately. For each $1 \leqslant i \leqslant 6$ we will denote the residue class of a polynomial f in R_{i} by \bar{f}.
Since $X \notin\left(X^{2}\right)$, we have in R_{1} that $\bar{X} \neq 0$. On the other hand, we have that $X^{2} \in\left(X^{2}\right)$ and thus $\bar{X}^{2}=0$. Then $R_{1} \neq 0$ and it contains a non-zero nilpotent element.
We have that $1 \notin(X Y)$ and hence $R_{5} \neq 0$. Since $X, Y \notin(X, Y)$ and $X Y \in(X Y)$ we have that $\bar{X} \cdot \bar{Y}=\overline{X Y}=0$ in R_{5} with $\bar{X}, \bar{Y} \neq 0$, so R_{5} has zero divisors. Next we claim that R_{5} has no nilpotent elements. Consider an element $f \in \mathbb{R}[X, Y]$ with \bar{f} being nilpotent. Then there exists $n \in \mathbb{N}$ with $\overline{f^{n}}=(\bar{f})^{n}=0$ and hence $f^{n} \in(X Y)$. In other words, f^{n} is divisible by $X Y$. But then also f has to be divisible by $X Y$, and thus $\bar{f}=0$ and we obtain our claim.
Next, consider the evaluation homomorphism $\mathbb{R}[X, Y, Z] \rightarrow \mathbb{R}[Z], f \mapsto f(0,0, Z)$. This homomorphism is surjective. The kernel consists of all polynomials only in variables X and Y, and is thus equal to (X, Y). By the first isomorphism theorem, we obtain an isomorphism $R_{2}=\mathbb{R}[X, Y, Z] /(X, Y) \cong \mathbb{R}[Z]$.
Let $Z:=X+Y$. Then $R_{4}=\mathbb{R}[Z, Y] /(Z)$ and the rings R_{2} and R_{4} are isomorphic to each other.
Note that $R_{6}:=\mathbb{R}[X, Y, Z] /(X Y+2 X+Y+2)=\mathbb{R}[X, Y, Z] /((X+1)(Y+2))$, so that there is an isomorphism

$$
\mathbb{R}[X, Y, Z] /((X+1)(Y+2)) \cong \mathbb{R}[X, Y, Z] /(X Y),
$$

and the rings R_{5} and R_{6} are isomorphic.

If we define $Q:=X+Z$, then there is an isomorphism

$$
R_{3} \cong \mathbb{R}[X, Y, Q] /\left(Y^{2}, Q\right) \cong \mathbb{R}[X, Y] /\left(Y^{2}\right)
$$

Then the rings R_{1} and R_{3} are isomorphic.
Finally, the properties above show that only $R_{1} \cong R_{3}$ contain a non-zero nilpotent element, while $R_{5} \cong R_{6}$ don't, so they can not be isomorphic to each other. Since $R_{5} \cong R_{6}$ contain zero-divisors, but $R_{2} \cong R_{4}$ are integral domains, they can not be isomorphic to each other either. Hence there are no further isomorphisms.
3. Let R be a commutative ring and let $\varphi: R \hookrightarrow \mathbb{Z}$ be a surjective ring homomorphism. Prove that the following statements are true or give a counter-example:
(a) image (φ) is a prime ideal in \mathbb{Z}.
(b) For \mathfrak{s} a prime ideal in $\mathbb{Z}, \varphi^{-1}(\mathfrak{s})$ is also a prime ideal in R.
(c) For \mathfrak{r} a prime ideal in R with $\operatorname{ker}(\varphi) \subseteq \mathfrak{r}, \varphi(\mathfrak{r})$ is also a prime ideal in \mathbb{Z}.

Solution: (a) This is wrong: let $R:=\mathbb{Z}$ and let φ be the identity. Then image $(\varphi)=\mathbb{Z}$, which is not a prime ideal in \mathbb{Z} as it is equal to the whole ring \mathbb{Z}.
(b) Note that $\varphi^{-1}(\mathfrak{s})$ can not be the entire ring R, since then $\varphi\left(\varphi^{-1}(\mathfrak{s})\right)=\mathbb{Z} \subseteq \mathfrak{s}$ and \mathfrak{s} would not be a prime ideal in \mathbb{Z}.
Let $a, b \in R$ be such that $a b \in \varphi^{-1}(\mathfrak{s})$. Then $\varphi(a) \varphi(b)=\varphi(a b) \in \mathfrak{s}$ and since \mathfrak{s} is a prime ideal, we have that $\varphi(a) \in \mathfrak{s}$ or $\varphi(b) \in \mathfrak{s}$. This implies that $a \in \varphi^{-1}(\mathfrak{s})$ or $b \in \varphi^{-1}(\mathfrak{s})$.
(c) Let $a, b \in \mathbb{Z}$ and $a b \in \varphi(\mathfrak{r})$ be arbitrary. We want to show that $a \in \varphi(\mathfrak{r})$ or $b \in \varphi(\mathfrak{r})$. Since φ is surjective, there exist $r, s \in R$ such that $\varphi(r)=a$ and $\varphi(s)=b$. Further, there exists $c \in \mathfrak{r}$ with $\varphi(c)=a b$. Then $\varphi(c)=a b=\varphi(r) \varphi(s)$, and since φ is a ring homomorphism, we obtain $\varphi(c-r s)=0$, so $c-r s \in \operatorname{ker}(\varphi)$.
By assumption $\operatorname{ker}(\varphi) \subseteq \mathfrak{r}$, so that $r s-c \in \mathfrak{r}$. Then $r s \in \mathfrak{r}$ and since \mathfrak{r} is a prime ideal, we have that $r \in \mathfrak{r}$ or $s \in \mathfrak{r}$. This implies $a \in \varphi(\mathfrak{r})$ or $b \in \varphi(\mathfrak{r})$, so $\varphi(\mathfrak{r})$ is a prime ideal.
4. Show that any finite integral domain is a field.

Solution: Let $a \in R$ be a non zero element of an integral domain R. Since R does not have any zero divisors, $a x=a y \Rightarrow a(x-y)=0 \Rightarrow x=y$. Hence the map $\varphi: R \rightarrow R$ which sends x to $a x$ is injective. Since R is finite the map φ is also surjective. In particular there is a $b \in R$ such that $a b=1$
5. Let R and S be rings with 1 and $\varphi: R \rightarrow S$ be a nonzero map which satisfies $\varphi(a+b)=$ $\varphi(a)+\varphi(b)$ and $\varphi(a b)=\varphi(a) \varphi(b), \forall a, b \in R$. Show that if $\varphi\left(1_{R}\right) \neq 1_{S}$ then $\varphi\left(1_{R}\right)$ is a zero divisor. Hence if S has no zero divisors then $\varphi\left(1_{R}\right)=1_{S}$.
Solution: Since $\varphi(a b)=\varphi(a) \varphi(b), \varphi\left(1_{R}\right)=\varphi\left(1_{R} \cdot 1_{R}\right)=\varphi\left(1_{R}\right) \varphi\left(1_{R}\right)$. Hence $\varphi\left(1_{R}\right)=$ $\varphi\left(1_{R}\right) 1_{S}=\varphi\left(1_{R}\right) \varphi\left(1_{R}\right)$. It then follows that $\varphi\left(1_{R}\right)\left[1_{S}-\varphi\left(1_{R}\right)\right]=0$. Since φ is a non zero map it follows that $\varphi\left(1_{R}\right) \neq 0$ and hence it is a zero divisor.
$\left(\right.$ Note $\left.\varphi\left(1_{R}\right)=0 \Rightarrow \varphi(r)=\varphi(r) \varphi\left(1_{R}\right)=0, \forall r \in R\right)$
6. Let $\varphi: R \rightarrow Q$ be a surjective ring homomorphism. Prove that there is a one-to-one correspondence between the ideals of Q and the ideals of R that contain $\operatorname{ker}(\varphi)$.
Solution: By the first isomorphism theorem, we have that there is an isomorphism $R / \operatorname{ker}(\varphi) \rightarrow$ Q, so it suffices to prove that there is a one-to-one correspondence between ideals of R containing $\operatorname{ker}(\varphi)$ and ideals of $R / \operatorname{ker}(\varphi)$. Let $\pi: R \rightarrow R / \operatorname{ker}(\varphi)$ denote the natural projection. Given an ideal $\mathfrak{a} \subseteq R$ with $\operatorname{ker}(\varphi) \subseteq \mathfrak{a}$, we let

$$
\pi(\mathfrak{a})=\{\pi(a) \mid a \in \mathfrak{a}\}=\{a+\operatorname{ker}(\varphi) \mid a \in \mathfrak{a}\} \subseteq R / \operatorname{ker}(\varphi)
$$

Given an ideal $\mathfrak{b} \subseteq R / \operatorname{ker}(\varphi)$, we will make it correspond to

$$
\pi^{-1}(\mathfrak{b})=\{b \in R \mid \pi(b) \in \mathfrak{b}\} .
$$

Note that any ideal \mathfrak{b} of $R / \operatorname{ker}(\varphi)$ contains the zero-element, $0_{R / \operatorname{ker}(\varphi)}=\operatorname{ker}(\varphi) \in \mathfrak{b}$. Hence for each $k \in \operatorname{ker}(\varphi)$ we have $\pi(k)=\operatorname{ker}(\varphi) \in \mathfrak{b}$, and thus $\operatorname{ker}(\varphi) \subseteq \pi^{-1}(\mathfrak{b})$.
Claim: If \mathfrak{a} is an ideal of R with $\operatorname{ker}(\varphi) \subseteq \mathfrak{a}$, then $\pi(\mathfrak{a})$ is an ideal of $R / \operatorname{ker}(\varphi)$.
Let \mathfrak{a} be an ideal of R. Let $a+\operatorname{ker}(\varphi) \in \pi(\mathfrak{a})$ and $r+\operatorname{ker}(\varphi) \in R / \operatorname{ker}(\varphi)$, with $a \in \mathfrak{a}$. Then we have $(r+\operatorname{ker}(\varphi))(a+\operatorname{ker}(\varphi))=r a+\operatorname{ker}(\varphi)=\pi(r a)$. Since \mathfrak{a} is an ideal, and $a \in \mathfrak{a}$ and $r \in R$, then $r a \in \mathfrak{a}$, so also $\pi(r a) \in \pi(\mathfrak{a})$.
Let $a+\operatorname{ker}(\varphi), a^{\prime}+\operatorname{ker}(\varphi) \in \pi(\mathfrak{a})$, with $a, a^{\prime} \in \mathfrak{a}$. Then $a+a^{\prime} \in \mathfrak{a}$, so $(a+\operatorname{ker}(\varphi))+\left(a^{\prime}+\right.$ $\operatorname{ker}(\varphi))=\left(a+a^{\prime}\right)+\operatorname{ker}(\varphi)=\pi\left(a+a^{\prime}\right) \in \pi(\mathfrak{a})$. Thus we obtain our claim.
Claim: If \mathfrak{b} is an ideal of $R / \operatorname{ker}(\varphi)$, then $\pi^{-1}(\mathfrak{b})$ is an ideal of R which contains $\operatorname{ker}(\varphi)$.
Let \mathfrak{b} be an ideal of $R / \operatorname{ker}(\varphi), a \in \pi^{-1}(\mathfrak{b})$, and $r \in R$. Then $\pi(a) \in \mathfrak{b}$, so $\pi(a r)=$ $\pi(a) \pi(r) \in \mathfrak{b}$, since \mathfrak{b} is an ideal. Thus $r a \in \pi^{-1}(\mathfrak{b})$.
If $a, a^{\prime} \in \pi^{-1}(\mathfrak{b})$, then $\pi\left(a+a^{\prime}\right)=\left(a+a^{\prime}\right)+\operatorname{ker}(\varphi)=a+\operatorname{ker}(\varphi)+a^{\prime}+\operatorname{ker}(\varphi)=\mathfrak{b}$, as $\operatorname{ker}(\varphi) \subseteq \mathfrak{b}$. So we have $a+a^{\prime} \in \pi^{-1}(\mathfrak{b})$. Thus $\pi^{-1}(\mathfrak{b})$ is an ideal of R. We have already seen that $\operatorname{ker}(\varphi) \subseteq \pi^{-1}(\mathfrak{b})$.
For an ideal $\mathfrak{b} \subseteq R / \operatorname{ker}(\varphi)$, let us denote $\bar{\Pi}: \mathfrak{b} \mapsto \pi^{-1}(\mathfrak{b})$. Similarly, we will write Π for the map sending an ideal $\mathfrak{a} \subseteq R$ with $\operatorname{ker}(\varphi) \subseteq \mathfrak{a}$, to $\pi(\mathfrak{a})$.
If $\bar{\Pi} \circ \Pi$ and $\Pi \circ \bar{\Pi}$ are both the identity, then Π is a bijection.
Let \mathfrak{a} be an ideal of R that contains $\operatorname{ker}(\varphi)$. We have that $\mathfrak{a} \subseteq \bar{\Pi}(\Pi(\mathfrak{a}))$ holds, because it holds for any subset and any function. Now, let $c \in \bar{\Pi}(\Pi(\mathfrak{a}))$. Then $c \in \pi^{-1}(\pi(\mathfrak{a}))$ and $\pi(c) \in \pi(\mathfrak{a})$. Hence there exists $a \in \mathfrak{a}$ such that $\pi(c)=\pi(a)$; hence $\pi(c-a) \in \operatorname{ker}(\pi) \subseteq \mathfrak{a}$. Thus, $c-a \in \mathfrak{a}$, and since $a \in \mathfrak{a}$, we have that $c \in \mathfrak{a}$. Thus $\bar{\Pi}(\Pi(\mathfrak{a})) \subseteq \mathfrak{a}$, and we obtain $\bar{\Pi} \circ \Pi=\mathrm{id}$.
Conversely, if \mathfrak{b} is an ideal of $R / \operatorname{ker}(\varphi)$, then $\Pi(\bar{\Pi}(\mathfrak{b}))=\mathfrak{b}$, because π is onto and this equality holds for any surjective function. This proves the desired correspondence.

