## Solutions Exercise sheet 1

1. Let $R$ be a principal ideal domain.
(a) Show that every ascending chain of ideals, $I_{1} \subseteq I_{2} \subseteq \cdots$, eventually become stationary. Or in other words, there is a positive index $n$ such that $I_{k}=I_{n}$ for all $k \geqslant n$.
(b) Show that every irreducible element is a prime element.

Solution: (a) Let $I=\cup I_{i}$. Then, if $a, b \in I$, we have that $a \in I_{m}$ and $b \in I_{n}$, for some $m, n$. Hence $a, b \in I_{\max \{m, n\}}$, so $a \pm b \in I_{\max \{m, n\}} \subset I$. Thus $I$ is a subrgoup under addition. If $a \in I$ then $a \in I_{n}$ for some $n$, and since $I_{n}$ is an ideal we have $r a \in I_{n}$ for all $r \in R$. Thus $r a \in I$ for all $r \in R$. Since $R$ is a principal ideal domain, there exists $a_{0} \in R$ with $I=\left(a_{0}\right)$. Now $b \in I$, so there exists a positive integer $n_{0}$ such that $a_{0} \in I_{n_{0}}$. Thus $I=\left(a_{0}\right) \subset I_{n_{0}}$. Hence if $n \geqslant n_{0}$ then $I \subset I_{n_{0}} \subseteq I_{n} \subseteq I$. Hence $I_{n}=I_{n_{0}}$.
(b) Let $a \in R$ be irreducible and let $b, c \in R$ with $a \mid b c$. If $a \mid b$, then we are done. Suppose $a \nmid b$. Then if $u \mid a$, we have that either $u$ is invertible or $u$ is an invertible element times $a$, since $a$ is assumed to be irreducible. Thus is $u$ divides both $a, b$ then $u$ must be invertible. Hence if $a$ doesn't divide $b$ then $a, b$ are relatively prime. Then the result will follow from the following claim:
Claim. Let $a, b$ be non-zero relatively prime elements of $R$. Then if $a \mid b c$ with $c \in R$ then $a \mid c$.
Proof of claim. Since $a, b$ are relatively prime, we can write an invertible element $u \in R$ as $u=a s+b t$. Writing $p=s / u$ and $q=t / u$, then $p, q \in R$ and we have $1=a p+b q$. This implies that

$$
c=(a p+b q) c=a p c+q b c .
$$

By assumption there is $v \in R$ with $b c=v a$. Thus

$$
c=a p c+q a v=a(p c+q v) .
$$

Thus $a \mid c$ and we obtain our claim.
2. Show that every principal ideal domain is a unique factorization domain.

Solution: Let $r \in R \backslash\left(R^{*} \cup\{0\}\right)$. We want to show that there exist irreducible elements $r_{1}, \ldots, r_{n}$ such that $r=r_{1} \cdots r_{n}$.
If $r$ is irreducible, we are done.
So assume $r$ is not irreducible. Then $r=r_{1} r_{2}$ where neither $r_{1}$ nor $r_{2}$ are units. If $r_{1}$ and $r_{2}$ are irreducible, then the proof is complete.
If $r_{1}$ is not irreducible, then $r_{1}=r_{11} r_{12}$, where neither $r_{11}$ nor $r_{12}$ are units. Continuing this way, we get a proper inclusion of ideals

$$
(r) \subset\left(r_{1}\right) \subset\left(r_{11}\right) \subset \cdots \subset R .
$$

If this process finishes in a finite number of steps, the proof is complete. But, we know by Exercise 1.a that this is the case.
3. Consider the ring $R:=\mathbb{Z}[i] \subset \mathbb{C}$ with the so called field norm

$$
N: R \rightarrow \mathbb{Z}_{\geqslant 0}, a+b i \mapsto(a+b i)(a-b i)=a^{2}+b^{2} .
$$

(a) Prove that $R$ is a Euclidean ring with respect to $N$.
(b) Determine $\operatorname{gcd}(3-i, 3+i)$ and $\operatorname{gcd}(2-i, 2+i)$ in $R$.
(c) Write $3+i$ as a product of prime elements from $R$.
(d) Prove that each prime element of $R$ divides exactly one prime number $p \in \mathbb{Z}$.
(e) Prove that each prime number $p \equiv 3(\bmod 4)$ is a prime element of $R$.

Solution: (a) Let $x, y \in R$ with $y \neq 0$. We can write $\frac{x}{y}=a+b i$ with $a, b \in \mathbb{Q}$. Choose $m, n \in \mathbb{Z}$ such that

$$
|a-m| \leqslant \frac{1}{2} \quad \text { and } \quad|b-n| \leqslant \frac{1}{2}
$$

and let $q:=m+n i$ and $r:=x-y q$. From our construction we obtain:

$$
\left|\frac{x}{y}-q\right|^{2}=(a-m)^{2}+(b-n)^{2} \leqslant\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}<1 .
$$

Then we have $x=y q+r$ with

$$
N(r)=|x-y q|^{2}=N(y)\left|\frac{x}{y}-q\right|^{2}<N(y) .
$$

Thus $R$ is a Euclidean ring for the function $N$.
(b) We will use the Euclidean algorithm with the function $N$ :

$$
\begin{aligned}
& 3-i=(3+i) \cdot(1-i)+(-1+i) \quad \text { with } \quad N(-1+i)<N(3+i) \\
& 3+i=(-1+i) \cdot(-1-2 i)+0 .
\end{aligned}
$$

This implies that

$$
\operatorname{gcd}(3-i, 3+i) \sim \operatorname{gcd}(3+i,-1+i) \sim \operatorname{gcd}(-1+i, 0) \sim-1+i
$$

Similarly, we compute

$$
2-1=(2+i) \cdot(1-i)-1 \quad \text { with } \quad N(-1)<N(2+i) .
$$

Thus $\operatorname{gcd}(2-i, 2+i) \sim \operatorname{gcd}(2+i,-1) \sim 1$.
(c) The field norm $N$ satisfies $N(1)=1$ and is multiplicative: for all $a, b \in R$ we have

$$
N(a b)=N(a) N(b) .
$$

If $s \in R^{\times}$is a unit, then also $s^{-1} \in R^{\times}$. Hence

$$
N(s) \cdot N\left(s^{-1}\right)=N\left(s s^{-1}\right)=N(1)=1 .
$$

On the other hand, are $\pm 1, \pm i$ the only elements $s \in R$ with $N(s)=1$. Hence

$$
s \in R^{\times} \Longleftrightarrow N(s)=1 \Longleftrightarrow s \in\{ \pm 1, \pm i\} .
$$

Since $N(3+i)=10$, we can write $3+i$ as a product of at most two elements $s, r \in R \backslash R^{\times}$ of norm 2 and 5 . Since $N$ is multiplicative, we have that $r$ and $s$ have to be irreducible. By trying out, we find that the element $N( \pm 1 \pm i)=2$ and $N(1+2 i)=5$, and that there is a decomposition

$$
3+i=(i-1)(1+2 i) .
$$

The ring $R$ is Euclidean, so it is also factorial, which means that irreducible elements are prime and the decomposition above is a product of prime elements.
(d) Let $a \in R$ be prime. Since $a$ is not a unit, we have $N(a)>1$, so that $N(a)$ has a nontrivial decomposition into prime numbers $N(a)=p_{1} \cdots p_{k}$. Note that $N(a)=a \cdot \bar{a}$, so that $a$ divides at least one prime number $p_{i}$, since $a$ is prime.

Let us assume that $a$ divides two different prime numbers $p$ and $q$. Then we have that 1 is a $\mathbb{Z}$-linear combination of $p$ and $q$ and hence also a $R$-linear combination. Hence $a$ divides the elements $1 \in R$, which is a contradiction.
(e) Let $p$ be prime number such that $p \equiv 3(\bmod 4)$. Then we have that $N(p)=p^{2} \geqslant 1$ and thus $p \notin R^{\times} \cup\{0\}$. Let us assume that $p$ is not a prime element of $R$.
Note that $N(p)=p^{2}$. Since $R$ is a factorial ring and $N$ is multiplicative, we can decompose $p=x y$ with $N(x)=N(y)=p$. Write $x=a+b i$, so that $a^{2}+b^{2}=p$. Note that each square number in $\mathbb{Z}$ has to be congruent to 0 or 1 modulo (4). This implies that $a^{2}+b^{2}$ has to be congruent to 0,1 or 2 modulo (4). But, we assumed that $p \equiv 3(\bmod 4)$, which leads to a contradiction. Hence $p$ is a prime element in $R$.
4. (a) Let $R$ be a ring with unique factorization. Prove: if $a, b, c \in R$ are nonzero, $a b=c^{n}$ and $a$ and $b$ are relatively prime then there are units $u, v \in R$ as well as elements $a^{\prime}, b^{\prime} \in R$, such that $a=u a^{\prime n}$ and $b=v b^{\prime n}$.
(b) There are counterexamples to the conclusion of (a) if we drop the the hypothesis that $R$ has unique factorization. Use $R=\mathbb{Z}[\sqrt{-26}]$ to give such a counterexample.
Solution: (a) Since $R$ is a ring with unique factorization, there exist irreducible elements $a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{j}$, and $c_{1} \ldots, c_{k} \in R$ and $u, v$ and $u_{c}$ units in $R^{*}$, for $i, j, k \in \mathbb{Z}_{\geqslant 0}$ such that there exists a unique factorisation

$$
u \cdot a_{1} \cdots a_{i} \cdot v \cdot b_{1} \cdots b_{j}=u_{c} \cdot c_{1}{ }^{n} \cdots c_{k}{ }^{n},
$$

with $a=u \cdot a_{1} \cdots a_{i}, b=v \cdot b_{1} \cdots b_{j}$ and $c=u_{c} \cdot c_{1}{ }^{n} \cdots c_{k}{ }^{n}$.
From $a_{1} \mid u_{c} \cdot c_{1}{ }^{n} \cdots c_{k}{ }^{n}$, we have that there exists an irreducible element $c_{l}$ such that $a_{1}=c_{l}$. W.l.o.g. we can assume $l=1$, so that $a_{1}=c_{1}$. Since $a$ and $b$ are relatively prime, we have that $c_{1}{ }^{n}$ divides $a$, but not $b$. Continuing this process inductively, we can write

$$
a_{1} \cdots a_{i}=c_{1}{ }^{n} \cdots c_{r}{ }^{n},
$$

for some $r \in \mathbb{Z}_{\geqslant 0}$. Similarly, we can write

$$
b_{1} \cdots b_{j}=c_{r+1}{ }^{n} \cdots c_{k}{ }^{n} .
$$

Setting $a^{\prime}:=c_{1} \cdots c_{r}$ and $b^{\prime}:=c_{r+1} \cdots c_{k}$ we obtain our claim.
(b) First, note that the only units in $\mathbb{Z}[\sqrt{-26}]$ are $\pm 1$. Let $a=1+\sqrt{-26}, b=1-\sqrt{-26}$ and $c=3$. Then $a b=c^{3}$. Assume that there are units $u, v \in\{ \pm 1\}$ as well as elements $a^{\prime}, b^{\prime} \in R$, such that $a=u a^{\prime 3}$ and $b=v b^{\prime 3}$. Since $a^{\prime} \in R$, there are $x, y \in \mathbb{Z}$ such that $a^{\prime}=x+y \sqrt{-26}$. But then

$$
u \cdot a^{\prime 3}=u \cdot\left(\left(x^{3}-26 x y^{2}\right)+\left(x^{2} y-26 y^{3}\right) \sqrt{-26}\right)=1+\sqrt{-26} .
$$

Thus we have the system of equations

$$
\begin{aligned}
& u \cdot x\left(x^{2}-26 y^{2}\right)=1 \\
& u \cdot y\left(x^{2}-26 y^{2}\right)=1,
\end{aligned}
$$

from which we obtain $x=y$. But then $u \cdot(-25) x^{3}=1$, which is not solvable in $\mathbb{Z}$.

