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Solutions Exercise sheet 1

1. Let R be a principal ideal domain.

(a) Show that every ascending chain of ideals, [; < I, < --- , eventually become statio-
nary. Or in other words, there is a positive index n such that [, = I,, for all £ > n.

(b) Show that every irreducible element is a prime element.

Solution: (a) Let I = Ul;. Then, if a,b € I, we have that a € I,,, and b € [,,, for some m, n.
Hence a,b € Iyax{mpn}> 80 @ £ b € Lyaximny < 1. Thus I is a subrgoup under addition. If
a € I then a € I, for some n, and since [,, is an ideal we have ra € I,, for all r € R. Thus
ra € I for all r € R. Since R is a principal ideal domain, there exists ag € R with I = (ayg).
Now b € I, so there exists a positive integer ng such that ag € I,,,. Thus I = (ag) < I,,.
Hence if n > ng then I < I,,, < I,, < I. Hence I,, = I,,,.

(b) Let a € R be irreducible and let b, c € R with a | be. If a | b, then we are done. Suppose
a 1 b. Then if u | a, we have that either « is invertible or u is an invertible element times a,
since a is assumed to be irreducible. Thus is u divides both a, b then u must be invertible.
Hence if a doesn’t divide b then a, b are relatively prime. Then the result will follow from
the following claim:

Claim. Let a, b be non-zero relatively prime elements of R. Then if a | bc with ¢ € R then
a|ec.

Proof of claim. Since a, b are relatively prime, we can write an invertible element v € R as
u = as + bt. Writing p = s/u and ¢ = t/u, then p,q € R and we have 1 = ap + bq. This
implies that

¢ = (ap + bq)c = apc + qbe.

By assumption there is v € R with bc = va. Thus
¢ = apc + qav = a(pc + qu).

Thus a | ¢ and we obtain our claim.

2. Show that every principal ideal domain is a unique factorization domain.

Solution: Let r € R\(R* u {0}). We want to show that there exist irreducible elements
r1,...,rpsuchthatr =rq---r,.

If r is irreducible, we are done.

So assume 7 is not irreducible. Then » = 717y where neither r; nor r5 are units. If r; and 7o
are irreducible, then the proof is complete.

If ; is not irreducible, then r; = 11719, where neither r1; nor r15 are units. Continuing this
way, we get a proper inclusion of ideals

(r)yc () < (rin)<c---<R.

If this process finishes in a finite number of steps, the proof is complete. But, we know by
Exercise 1.a that this is the case.



3. Consider the ring R := Z[i] < C with the so called field norm
N: R — Zzg, a+ bi — (a+ bi)(a — bi) = a® + b

(a) Prove that R is a Euclidean ring with respect to /V.

(b) Determine ged(3 —4,3 + ¢) and ged(2 — ¢,2 +4) in R.

(¢c) Write 3 + ¢ as a product of prime elements from R.

(d) Prove that each prime element of R divides exactly one prime number p € Z.
(e) Prove that each prime number p = 3 (mod 4) is a prime element of R.

Solution: (a) Let x,y € R with y # 0. We can write g = a + bi with a,b € Q. Choose
m,n € 7 such that
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and let ¢ := m + nt and r := x — yq. From our construction we obtain:

2:(a—m)2+(b—n)2< <%>2+ (%)2<1.

Then we have x = yq + r with

1
|a—m|<§ and |b—n| <

T
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N(r) = |z —yq|? =N(y)‘§—q < N(y).

Thus R is a Euclidean ring for the function V.

(b) We will use the Euclidean algorithm with the function N:

3—i=B+1d)-(1—i)+(—-1+4) with N(=1+14) < N(3+1)
3+i=(-1+14)-(—1—-2i)+0.

This implies that
ged(3 —4,3 +1i) ~ ged(3 41, —1 +1i) ~ ged(—1 +4,0) ~ —1 + 1.
Similarly, we compute
2—1=2+14)-(1—-4)—1 with N(—-1) < N(2+1).

Thus ged(2 — 4,2 + i) ~ ged(2 4+ 4,—1) ~ 1.
(c) The field norm N satisfies N (1) = 1 and is multiplicative: for all a,b € R we have

N(ab) = N(a)N(b).
If s € R* is a unit, then also s~ € R*. Hence
N(s)-N(s') = N(ss ') =N(1) = 1.
On the other hand, are +1, +i the only elements s € R with N(s) = 1. Hence

s€ER* «— N(s)=1 < se{£l,+i}.
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Since N (3 + i) = 10, we can write 3 + i as a product of at most two elements s, € R\R*
of norm 2 and 5. Since N is multiplicative, we have that r and s have to be irreducible. By
trying out, we find that the element N(+1 + i) = 2 and N(1 + 2¢) = 5, and that there is a
decomposition

34+i=(1—1)(1+ 2i).

The ring R is Euclidean, so it is also factorial, which means that irreducible elements are
prime and the decomposition above is a product of prime elements.

(d) Let @ € R be prime. Since a is not a unit, we have N(a) > 1, so that N(a) has a non-
trivial decomposition into prime numbers N (a) = p; - - - px. Note that N(a) = a - @, so that
a divides at least one prime number p;, since a is prime.

Let us assume that a divides two different prime numbers p and ¢q. Then we have that 1 is a
Z.-linear combination of p and ¢ and hence also a R-linear combination. Hence a divides the
elements 1 € R, which is a contradiction.

(e) Let p be prime number such that p = 3 (mod 4). Then we have that N(p) = p* > 1 and
thus p ¢ R* U {0}. Let us assume that p is not a prime element of R.

Note that N (p) = p. Since R is a factorial ring and N is multiplicative, we can decompose
p = xy with N(z) = N(y) = p. Write = a + bi, so that a®> + 0> = p. Note that each
square number in Z has to be congruent to 0 or 1 modulo (4). This implies that a® + b* has
to be congruent to 0, 1 or 2 modulo (4). But, we assumed that p = 3 (mod 4), which leads to
a contradiction. Hence p is a prime element in R.

(a) Let R be aring with unique factorization. Prove: if a, b, c € R are nonzero, ab = ¢" and
a and b are relatively prime then there are units u, v € R as well as elements o/, 0’ € R,
such that a = ua™ and b = vb™.

(b) There are counterexamples to the conclusion of (a) if we drop the the hypothesis that
R has unique factorization. Use R = Z[+/—26] to give such a counterexample.

Solution: (a) Since R is a ring with unique factorization, there exist irreducible elements
ai,...,a; bi,...,b5,and ¢; ..., ¢, € R and u,v and u, units in R*, for ¢, j, k € Zx( such
that there exists a unique factorisation

u.al...ai-v-bl...bj :uc-cln-..ckn7

witha=u-a;---a;,b=v-b;---bjandc=u.-c;"---¢;".

From a; | u.-c;™ - - - ¢", we have that there exists an irreducible element ¢; such that a; = .
W.l.o.g. we can assume [ = 1, so that a; = c;. Since a and b are relatively prime, we have
that ¢;" divides a, but not b. Continuing this process inductively, we can write

n n
ap---a; =C1 -+ -Cp
for some r € Z;O. Slmllarly, we can write

n n
bl"'bj:CT+l e

Setting @’ := ¢y ---¢, and b/ := ¢, ;1 - - - ¢, we obtain our claim.



(b) First, note that the only units in Z[+/—26] are +£1. Leta = 1 ++/—26,b = 1 —+/—26 and
¢ = 3. Then ab = 3. Assume that there are units u,v € {£1} as well as elements a’,V € R,
such that @ = ua’™ and b = vb'3. Since o’ € R, there are x,y € Z such that ' = x + y+/—26.
But then

u-a® =wu-((x° - 262y°) + (z°y — 26¢°)v/—26) = 1 +/—26.
Thus we have the system of equations

u-x(2® —26y°%) =1
w-y(a? - 26y%) = 1,

from which we obtain z = y. But then u - (—25)2 = 1, which is not solvable in Z.



